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It is in this connection worth noticing  
that in the Comm.ACM the papers  
on data bases […] are of markedly lower 
linguistic quality than the others.

—Edsger Dijkstra (EWD691)

Apologies, I am only 
a database person



Torsten Grust U  Tübingen

The point is that the way in which the database 
management experts tackle the problems seems to be 
so grossly inadequate. They seem to form an inbred 
crowd with very little knowledge of computing science 
in general, who tackle their problems primarily 
politically instead of scientifically. 

Often they seemed to be mentally trapped by the 
intricacies of early, rather ad hoc solutions to rather 
accidental problems; as soon as such a technique has 
received a name, it becomes "a database concept". 3

—Edsger Dijkstra (EWD577)
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accidental problems; as soon as such a technique has 
received a name, it becomes "a database concept". 
And a totally inadequate use of language, sharpening 
their pencils with a blunt axe. 

I learned a few things about Databases. I learned 
—or: had my tentative impression confirmed— that 
the term "Database Technology", although sometimes 
used, is immature, for there is hardly any underlying 
"science" that could justify the use of the term 
"technology".

3

—Edsger Dijkstra (EWD577)
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[  h x  |  x ← xs,   p x  ]  

1. Successively draw bindings for x from domain xs,

2. for those bindings that pass filter p,

3. evaluate head h,

4. collect results to form

M

an M.

head filter

generator
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Extension  vs.  Intension

5

I, III, V, VII, IX

[  roman x  |  x ← [1…10],  odd x  ]  set

{              }
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Relational Completeness of Data Base Sublanguages 
E. F. Codd, IBM Research Report RJ987, 1972

head filter

generator
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Core of XQuery: versatile FLWOR expression

XQuery 3.0: An XML Query Language 
D. Chamberlin et al., W3C Recommendation, April 2014head

generator

generator head

filter
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A Data Model and Algebra for XQuery 
M. Fernandez et al., October 2003 

generator

head filter
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1 module Query where
2 import Prelude hiding (elem,index)
3  
4 -- Data Model: Constructors ----------------------------------------------------
5  
6 text    :: String -> Node
7 elem    :: Tag -> [Node] -> Node
8 ref    :: Node -> Node
9  
10 year0    :: Node
11 year0    =  elem "@year" [ text "1999" ]
12  
13 book0    :: Node
14 book0           =  elem "book" [    
15              elem "@year"  [ text "1999" ],
16              elem "title"  [ text "Data on the Web" ],
17              elem "author" [ text "Abiteboul" ],
18              elem "author" [ text "Buneman" ],
19              elem "author" [ text "Suciu" ]]
20  
21 bib0    :: Node
22 bib0            =  elem "bib" [
23              elem "book" [    
24                elem "@year"  [ text "1999" ],
25                elem "title"  [ text "Data on the Web" ],

An XQuery Nucleus 

9Torsten Grust U  Tübingen
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An XQuery Nucleus 

9Torsten Grust U  Tübingen

• ≈ 430 lines of Haskell (300+ lines of examples) 

• Implements a complete XQuery core,  
including tree construction and traversal 

• List comprehensions express path navigation, FLOWR, 
grouping/aggregation, quantification
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around SelectMany (aka >>=, flatmap)

The World According to LINQ 
E. Meijer, October 2011 
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around SelectMany (aka >>=, flatmap)

The World According to LINQ 
E. Meijer, October 2011 

generator

head

filter
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Implicit Parallelism through Deep Language Embedding 
A. Alexandrov et al., SIGMOD 2015

Deep embedding of comprehensions in Scala,  
compiles to Apache Flink / Spark

generator

head

filter



Torsten Grust U  Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs



Torsten Grust U  Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

generator head

filter



Torsten Grust U  Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

generator head

filter



Torsten Grust U  Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

Told you so.

generator head

filter
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SQL
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Query Q4 of the TPC-H OLAP benchmark

generator
head

filter

head
generator

filter

generator head

head filter
generator

head filtergenerator
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SQL
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c ← z; 
foreach x ∈ xs do 
    c ←  f (c ,x); 
return c;

fold(z,f,xs) ≡
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One Program Form for SQL
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M carrier liftM zM ⊕M

bag bag t {⋅} ∅ ⊎
set set t {⋅} ∅ ∪
list list t [⋅] [ ] ++
all bool id TRUE ∧

some bool id FALSE ∨
sum num id 0 +
max t (ordered) id -∞ max2
min t (ordered) id ∞ min2

true
false

c ← z; 
foreach x ∈ xs do 
    c ←  f (c ,x); 
return c;

fold(z,f,xs) ≡
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SELECT A 
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fold(∅,⊕,S) with 
  ⊕(c,x) = c ⊎ (if (x.A > x.B) {x.A}  
               else ∅)
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One Program Form for SQL

17

SELECT A 
FROM   S 
WHERE  A > B

SELECT x.A,y.B 
FROM   R x,S y

fold(∅,⊕,S) with 
  ⊕(c,x) = c ⊎ (if (x.A > x.B) {x.A}  
               else ∅)

fold(∅,⊕,R) with 
  ⊕(c,x) = c ⊎ fold(∅,⊗,S) with 
     ⊗(d,y) = d ⊎ {(x.A,y.B)}
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SELECT COUNT(*) 
FROM   R x 
WHERE  EXISTS (SELECT y 
               FROM   S y 
               WHERE  x.A = y.B)

fold(0,⊕,fold(∅,⊗,R)) with
with ⊕(c,_) = c + 1

⊗(d,x) = d ⊎ if (fold(false,⊙,S)) {x} else ∅
with ⊙(e,y) = e ∨ (x.A = y.B)
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fold(,,) Gets Ugly Quickly

18

SELECT COUNT(*) 
FROM   R x 
WHERE  EXISTS (SELECT y 
               FROM   S y 
               WHERE  x.A = y.B)

fold(0,⊕,fold(∅,⊗,R)) with
with ⊕(c,_) = c + 1

⊗(d,x) = d ⊎ if (fold(false,⊙,S)) {x} else ∅
with ⊙(e,y) = e ∨ (x.A = y.B)

Algebraic 
Wonderland.

REJECT!
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Comprehension Semantics
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[  e  |  v1 ← e1,  q  ]M  

[  e  |  ]M  

[  e  |  p,  q  ]M  

liftM(e)  

if (p)  [  e  |  q  ]M  else  zM  

fold(zM,⊗,e1)  with 
   ⊗(c,v1) = c ⊕M  [  e  |  q  ]M

≡

≡

≡
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SELECT y 
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WHERE  x.A = y.B

EXISTS ( 

                        )

SELECT COUNT(*) 
FROM   R x 
WHERE 

[  y  |  y  ← S, x.A = y.B ]bag[  true |  _ ←                                       ]some
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[  1  |  x ← R,   [  x.A = y.B |   y  ← S ]some  ]sum  

[  1  |  x ← R,    
                                                                                                              ]sum  

SELECT y 
FROM   S y 
WHERE  x.A = y.B

EXISTS ( 

                        )

SELECT COUNT(*) 
FROM   R x 
WHERE 

[  y  |  y  ← S, x.A = y.B ]bag[  true |  _ ←                                       ]some
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[  e  |  qs1,  v ← [ ]N,  qs3 ]M  

[  e  |  qs1,  v ← [ e2 ]N,  qs3 ]M  

[  e  |  qs1,  v ← [ e2 | qs2 ]N,  qs3 ]M  

[  e  |  qs1,  [ e2 | qs2 ]some,  qs3 ]M  
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Comprehension Unnesting
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[  e  |  qs1,  v ← [ ]N,  qs3 ]M  

[  e  |  qs1,  v ← [ e2 ]N,  qs3 ]M  

[  e  |  qs1,  v ← [ e2 | qs2 ]N,  qs3 ]M  

[  e  |  qs1,  [ e2 | qs2 ]some,  qs3 ]M  

[ ]M  

[  e[e2/v]  |  qs1,   qs3[e2/v] ]M  

[  e[e2/v]  |  qs1,   qs2,  qs3[e2/v] ]M  

[  e  |  qs1,  qs2,  e2,  qs3  ]M  
 (⊕M  idempotent)
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On Optimizing an SQL-like Nested Query 
W. Kim, ACM TODS, 1982 

When Syntax Distracts

Implemented in most RDBMSs to this day
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types N, Nx, D, J, A, JA, JA(NA), JA(AA), JA(AN), … 

• Classes are associated with their particular 
SQL–level unnesting rewrites.
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SELECT DISTINCT f(x) 
FROM   R AS x 
WHERE  p(x) IN (SELECT g(y) 
       FROM   S AS y 
             WHERE  q(x,y))
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SELECT DISTINCT f(x) 
FROM   R AS x 
WHERE  p(x) IN (SELECT g(y) 
       FROM   S AS y 
             WHERE  q(x,y))

[  f(x)  | x ← R,    
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SELECT DISTINCT f(x) 
FROM   R AS x 
WHERE  p(x) IN (SELECT g(y) 
       FROM   S AS y 
             WHERE  q(x,y))

SELECT DISTINCT f(x) 
FROM   R AS x, S AS y 
WHERE  q(x,y)  
AND    p(x) = g(y)          

[  f(x)  |   x ← R,  y ← S, q(x,y),  p(x) = g(y) ]set  
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Groupwise Processing of Relational Queries 

Damianos Chatziantoniou” Kenneth A. ROSS* 
Department of Computer Science, Columbia University 

damia,nos,kar@cs.columbia.edu 

Abstract 

In this paper, we define and examine a particu- 
lar class of queries called group queries. Group 
queries are natural queries in many decision- 
support applications. The main characteristic of a 
group query is that it can be executed in a group- 
by-group fashion. In other words, the underlying 
relation(s) can be partitioned (based on some set 
of attributes) into disjoint groups, and each group 
can be processed separately. We give a syntactic 
criterion to identify these queries and prove its 
sufficiency. We also prove the strong result that 
every group query has an equivalent formulation 
that satisfies our syntactic criterion. We describe 
a general evaluation technique for group queries, 
and demonstrate how an optimizer can determine 
this plan. We then consider more complex queries 
whose components are group queries with poten- 
tially different partitioning attributes. We give 
two methods to identify group query components 
within such a query. We also give some per- 
formance results for group queries expressed in 
standard SQL, comparing a commercial database 
system with our optimized plan on top of the 
same commercial system. These results indicate 
that there are significant potential performance 
improvements. 

‘This research was supported by a grant from the AT&T 
Foundation, by a David and Lucile Packard Foundation Fel- 
lowship in Science and Engineering, by a Sloan Foundation 
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF 
Young Investigator award. 
Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 
Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

1 Introduction 

With the recent interest in decision support systems and 
data warehousing has come a demand for techniques to 
evaluate and optimize very complex relational queries in- 
volving both aggregation and joins. Current commercial 
systems do not find good plans for many very complex 
queries. 

In this paper we examine a particular class of complex 
queries, called group queries. Many complex decision 
support queries describe the following idea: for each value z 
in a dimension D (e.g. for each customer), evaluate a query 
Q’. This query Q’ can be something simple (e.g. compute 
avg(sales)) or complex (e.g. include joins, selections, fur- 
ther aggregations, etc). To specify this kind of complex 
query in SQL, one has to embed D within many places 
of a complex piece of SQL code. This may have many 
drawbacks in terms of performance if the optimizer is not 
aware of the query’s structure. This particular structure 
is often amenable to the following evaluation strategy: 
partition the data along dimension D, and evaluate Q’ 
independently on each partition. Therefore it is important 
to be able to identify whether an SQL specification has the 
form mentioned above. In that case, that SQL specification 
constitutes a group query. Our main contributions are: 

Group Queries (Section 2) We define the concept of 
a group query. A query Q is a group query with respect 
to certain partitioning attributes S if, for all databases, 
it is possible to answer Q by (a) partitioning the data 
according to the values for attribute(s) S, (b) evaluating 
another query Q’ on each partition of the database, and (c) 
taking the union of the results. Common decision support 
queries require complex operations within groups and not 
just simple aggregation. We provide a syntactic criterion 
for identifying group queries and prove its sufficiency. We 
also prove the surprising result that every group query can 
be expressed in a way that satisfies our syntactic criterion. 
We consider arbitrary relational queries expressed in SQL, 
and do not restrict ourselves to a special syntax. 

Execution Plan (Section 3) We demonstrate how a 
group query can be evaluated by partitioning the data and 
applying a significantly simpler query to each partition. 
Further, this evaluation plan can be automatically gener- 
ated given a query that satisfies the criterion. The main 
benefits of this approach are that the simpler query is often 
much easier to optimize and evaluate, and often partitions 

476 

Groupwise Processing of Relational Queries 
D. Chatziantoniou, K.A. Ross, VLDB 1997 
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sufficiency. We also prove the strong result that 
every group query has an equivalent formulation 
that satisfies our syntactic criterion. We describe 
a general evaluation technique for group queries, 
and demonstrate how an optimizer can determine 
this plan. We then consider more complex queries 
whose components are group queries with poten- 
tially different partitioning attributes. We give 
two methods to identify group query components 
within such a query. We also give some per- 
formance results for group queries expressed in 
standard SQL, comparing a commercial database 
system with our optimized plan on top of the 
same commercial system. These results indicate 
that there are significant potential performance 
improvements. 
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1 Introduction 

With the recent interest in decision support systems and 
data warehousing has come a demand for techniques to 
evaluate and optimize very complex relational queries in- 
volving both aggregation and joins. Current commercial 
systems do not find good plans for many very complex 
queries. 

In this paper we examine a particular class of complex 
queries, called group queries. Many complex decision 
support queries describe the following idea: for each value z 
in a dimension D (e.g. for each customer), evaluate a query 
Q’. This query Q’ can be something simple (e.g. compute 
avg(sales)) or complex (e.g. include joins, selections, fur- 
ther aggregations, etc). To specify this kind of complex 
query in SQL, one has to embed D within many places 
of a complex piece of SQL code. This may have many 
drawbacks in terms of performance if the optimizer is not 
aware of the query’s structure. This particular structure 
is often amenable to the following evaluation strategy: 
partition the data along dimension D, and evaluate Q’ 
independently on each partition. Therefore it is important 
to be able to identify whether an SQL specification has the 
form mentioned above. In that case, that SQL specification 
constitutes a group query. Our main contributions are: 

Group Queries (Section 2) We define the concept of 
a group query. A query Q is a group query with respect 
to certain partitioning attributes S if, for all databases, 
it is possible to answer Q by (a) partitioning the data 
according to the values for attribute(s) S, (b) evaluating 
another query Q’ on each partition of the database, and (c) 
taking the union of the results. Common decision support 
queries require complex operations within groups and not 
just simple aggregation. We provide a syntactic criterion 
for identifying group queries and prove its sufficiency. We 
also prove the surprising result that every group query can 
be expressed in a way that satisfies our syntactic criterion. 
We consider arbitrary relational queries expressed in SQL, 
and do not restrict ourselves to a special syntax. 

Execution Plan (Section 3) We demonstrate how a 
group query can be evaluated by partitioning the data and 
applying a significantly simpler query to each partition. 
Further, this evaluation plan can be automatically gener- 
ated given a query that satisfies the criterion. The main 
benefits of this approach are that the simpler query is often 
much easier to optimize and evaluate, and often partitions 
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[ ⟨f(x), [ g(y) | y  ← R, f(y) = f(x) ]agg⟩ |  x ← R ]set  



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations



Torsten Grust U  Tübingen26

A Zoo of  
Query Representations

SELECT agg(g(x)) 
FROM   P AS x

P P P
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[ g(y) | y  ← P ]agg  

Q’ g agg P ≡  
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applied separately to partitions of FYIJJG based in id, 

and the partial results could be unioned together. 
Query Q3 is expressed in standard SQL as follows. View 

Vl contains the average duration of the sections read in the 
days before each access to the world section, and view V2 
the average duration of the sections read in the days after. 

We join Vl and V2 in order to get the result in single 
tuples. The actual SQL formulation is omitted due to lack 
of space and appears in [Cha97]. Once again, FYI-LOG 
can be partitioned on id attribute and a simpler query can 

be posed separately on each partition. We shall discuss 
Query Q4 in Section 2.4. 

2 Theoretical Framework 
In this section, we introduce our terminology and define 
what we mean by a group query. We give a syntactic 
criterion for identifying group queries and prove that this 
condition is sufficient. We also show that every group query 

can be expressed in a form that satisfies our criterion. 

2.1 Assumptions and Terminology 

We assume that queries are written in terms of views, with 
no subqueries. This is a valid assumption since there are 
many ways to rewrite a subquery as a join of two (or more) 
views [Kim82, Day87, SPLSG]. We initially assume that the 
database contains a single relation R. (Multiple relations 
will be considered in Section 2.4.) R may itself be a view 
or the result of another query, but from our point of view it 
is treated as an encapsulated table. (I.e., if R was a view, 

then we don’t consider unfolding the definition of R into 
queries over R.) 

We shall define below the notion of a query graph. A 
query graph has nodes that are relational operations. We 
consider three kinds of relational operations: 

Basic Blocks A basic block is some combination of 
projections and selections applied to a join of relations. In 

SQL such operations are expressed as SELECT-FROM-WHERE 

queries without aggregates or attribute renaming. A base 
relation is also treated as a basic block. 

Aggregation Blocks An aggregation block is a sin- 
gle aggregation operation specifying a set of grouping 

attributes and a list of aggregate functions to be com- 
puted over the groups. The aggregation can optionally 

be followed by a selection. In SQL, such operations are 
expressed as SELECT-FROM-GROUPBY-HAVING queries where 
the SELECT clause includes all grouping attributes (plus 

some aggregates), and the FROM clause contains a single 
relation. 

Set Blocks Set blocks express the set-oriented opera- 
tions, namely union, intersection and difference of relations 
with the same schema. The corresponding SQL constructs 
are UNION, INTERSECT and EXCEPT. 

Any relational query can be specified using these three 
operations. A query can be split into two blocks if neces- 
sary, for example if the query has both a WBERE clause and 
a GROUPBY clause then we can rewrite it as an aggregation 
block applied to a basic block. Note that we do not allow 
constant relations in queries, nor do we allow attribute 

renaming. (In [Cha97] we describe the extensions needed 

to handle the renaming operator.) 

Definition 2.1: (Query Graph) Suppose that we are 
given a query Q. The nodes of the query graph for Q 
are the relational operations (as defined above) used in Q 
and its subviews. Basic blocks are written as rectangles, 
aggregation blocks as circles, and set blocks as diamonds. 
Every block is given a label corresponding to the view (or 
relation) name of that block. There is an edge from node 
labeled Ni to node labeled Ns if Ns is mentioned in the 
FROM clause of Ni , or if Ns is an argument of a set operation 
in Ni. An edge whose source is an aggregation block N is 
labeled with the grouping attributes of N. Edges coming 
out of a single basic block N are linked together with an 
arc, and jointly labeled by the join condition of N. Edges 
coming out of set blocks are not labeled. 0 

A query graph is a directed acyclic graph with a single 
source (root) node representing the query result. We shall 
conventionally draw the graph with edges “pointing up.” 
For single-relation databases, there will always be a single 
sink node at the top of the picture. Figure 1 shows the 
query graphs for queries Ql, and Q2. Notice the separation 

of V2 and V3 from query Ql into basic blocks (V2B, V3B) 
and aggregation blocks (V2A, V3A). 

E), , O2 : join conditions. 0 : join condition. 

(4 query Ql (b) query Q2 

Figure 1: Query graphs 

Definition 2.2: (Partitioning) Let S be a set of attributes 
from the underlying relation R, and let D represent the 

domain over which the tuples of S values range. For every 

node N in the query graph and for x E D we write N(x) 
to represent the answer at node N when the extension of 
R is replaced by crs== (R). 0 

Observe that the attributes in S do not have to be at- 
tributes of the answer at node N for N(x) to be well- 

defined. Also, observe that R = UzED R(z). 
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projections and selections applied to a join of relations. In 

SQL such operations are expressed as SELECT-FROM-WHERE 

queries without aggregates or attribute renaming. A base 
relation is also treated as a basic block. 

Aggregation Blocks An aggregation block is a sin- 
gle aggregation operation specifying a set of grouping 

attributes and a list of aggregate functions to be com- 
puted over the groups. The aggregation can optionally 

be followed by a selection. In SQL, such operations are 
expressed as SELECT-FROM-GROUPBY-HAVING queries where 
the SELECT clause includes all grouping attributes (plus 

some aggregates), and the FROM clause contains a single 
relation. 

Set Blocks Set blocks express the set-oriented opera- 
tions, namely union, intersection and difference of relations 
with the same schema. The corresponding SQL constructs 
are UNION, INTERSECT and EXCEPT. 

Any relational query can be specified using these three 
operations. A query can be split into two blocks if neces- 
sary, for example if the query has both a WBERE clause and 
a GROUPBY clause then we can rewrite it as an aggregation 
block applied to a basic block. Note that we do not allow 
constant relations in queries, nor do we allow attribute 

renaming. (In [Cha97] we describe the extensions needed 

to handle the renaming operator.) 

Definition 2.1: (Query Graph) Suppose that we are 
given a query Q. The nodes of the query graph for Q 
are the relational operations (as defined above) used in Q 
and its subviews. Basic blocks are written as rectangles, 
aggregation blocks as circles, and set blocks as diamonds. 
Every block is given a label corresponding to the view (or 
relation) name of that block. There is an edge from node 
labeled Ni to node labeled Ns if Ns is mentioned in the 
FROM clause of Ni , or if Ns is an argument of a set operation 
in Ni. An edge whose source is an aggregation block N is 
labeled with the grouping attributes of N. Edges coming 
out of a single basic block N are linked together with an 
arc, and jointly labeled by the join condition of N. Edges 
coming out of set blocks are not labeled. 0 

A query graph is a directed acyclic graph with a single 
source (root) node representing the query result. We shall 
conventionally draw the graph with edges “pointing up.” 
For single-relation databases, there will always be a single 
sink node at the top of the picture. Figure 1 shows the 
query graphs for queries Ql, and Q2. Notice the separation 

of V2 and V3 from query Ql into basic blocks (V2B, V3B) 
and aggregation blocks (V2A, V3A). 

E), , O2 : join conditions. 0 : join condition. 
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Figure 1: Query graphs 

Definition 2.2: (Partitioning) Let S be a set of attributes 
from the underlying relation R, and let D represent the 

domain over which the tuples of S values range. For every 

node N in the query graph and for x E D we write N(x) 
to represent the answer at node N when the extension of 
R is replaced by crs== (R). 0 

Observe that the attributes in S do not have to be at- 
tributes of the answer at node N for N(x) to be well- 

defined. Also, observe that R = UzED R(z). 
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[ g(y) | y  ← P ]agg  Q’ g agg P =

[ f(x) | x ← xs ]M  map f xs =

[ ⟨f(x), [ y | y ← xs, f(x) = f(y) ]M⟩ | x ← xs ]set  partition f xs =

map (λ⟨x,P⟩.⟨x, Q’ g agg P⟩ (partition f xs)

SELECT   f(x), agg(g(x)) 
FROM     R AS x 
GROUP BY f(x)
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xpath p (root c)xpath (/p) c =

[ n’ | n ← xpath p1 c, n’ ← xpath p2 n ]X  xpath (p1/p2) c =

[ n | n ← xpath p c, [ true | _ ← xpath q n ]some ]X  xpath (p[q]) c =

step (ax::t) c xpath (ax::t) c =

/descendant::a[following::b]/child::c

1. Normalize, simplify, flip XPath step expressions

2. Compile XPath into queries over tabular XML encoding
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  <f><!--g--> 
     <h><i/><j/></h> 
  </f> 
</a>
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/descendant::g/preceding::c

SELECT   DISTINCT v’ 
FROM     doc v, doc v’ 
WHERE    tag v = ’g’ AND tag v’ = ’c’ 
AND      pre v’ < pre v AND post v’ < post v 
ORDER BY pre v’

[ v’  | v ← doc,  tag v = ’g’,  v’ ← doc,  
       pre v’ < pre v,   post v’ < post v,   tag v’ = ’c’ ]X 
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[ sum salary 
| (name, “MS”, salary) <- employees 
, then group using runs 3 
, then take 5 
]

OVER

row patterns!

Not shown:  set operations, joins, WITH…RECURSIVE, …
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Database–Supported Haskell
-— rolling minimum (mins [3,4,1,7] = [3,3,1,1]) 
mins :: Ord a =>   [a] ->   [a] 
mins xs = 
  [ minimum [ y | (y,j) <- #xs, j <= i ] | (_,i) <- #xs ] 

-— margin: current value - minimum value up to now 
margins :: (Ord a, Num a) =>   [a] ->   [a] 
margins xs = [ x - y | (x,y) <- zip xs (mins xs) ] 

-— our profit is the maximum margin obtainable 
profit :: (Ord a, Num a) =>   [a] ->   [a] 
profit xs = maximum (margins xs) 

-— best profit obtainable for stock on given date 
bestProfit :: Text -> Date ->   [Trade] ->   Double 
bestProfit stock date trades = 
  profit [ price t | t <- sortWith ts trades, 
                     id t == stock, day t == date ] 

Q

Q Q

Q

Q Q

Q

Q
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mins xs = 
  [ minimum [ y | (y,j) <- #xs, j <= i ] | (_,i) <- #xs ] 

-— margin: current value - minimum value up to now 
margins :: (Ord a, Num a) =>   [a] ->   [a] 
margins xs = [ x - y | (x,y) <- zip xs (mins xs) ] 

-— our profit is the maximum margin obtainable 
profit :: (Ord a, Num a) =>   [a] ->   [a] 
profit xs = maximum (margins xs) 

-— best profit obtainable for stock on given date 
bestProfit :: Text -> Date ->   [Trade] ->   Double 
bestProfit stock date trades = 
  profit [ price t | t <- sortWith ts trades, 
                     id t == stock, day t == date ] 

id ts day price
ACME 1 7/1/15 3.0
ACME 2 7/1/15 4.0
ACME 3 7/1/15 1.0
ACME 4 7/1/15 7.0
⠇ ⠇ ⠇ ⠇

Trades
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Q
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Database–Supported Haskell

—- SQL code generated from Haskell source 
SELECT MAX(margins.price - margins.min) 
FROM    
  (SELECT t.price,  
          MIN(t.price)  
            OVER (ORDER BY t.ts ROW BETWEEN 
                  UNBOUNDED PRECEDING 
                  AND CURRENT ROW) 
   FROM trades AS t 
   WHERE t.id = ‘ACME’ 
   AND   t.day = ’07/01/2015’ 
  ) AS margins(price,min)                 
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Comprehensions 
Yield Independent Work  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f :: a → b
f 1 :: [a] → [b]
f 2 :: [[a]] → [[b]]

f 2 [  g x  |  x ← xs ]  
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Comprehensions 
Yield Independent Work  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f :: a → b
f 1 :: [a] → [b]
f 2 :: [[a]] → [[b]]

f 2 (g1 xs)
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[ f n e | x ← xs ]  ⇝  f n+1 [ e | x ← xs ]  
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[ f n e | x ← xs ]  ⇝  f n+1 [ e | x ← xs ]  

Nested Data Parallelism

Implementation of a Portable Nested Data-Parallel Language 
G. E. Blelloch et al., ACM PPoPP, May 1993
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