
Torsten Grust

db.inf.uni-tuebingen.de

Take Everything From Me,
But Leave Me
The Comprehension

DBPL — September 2017

http://www-db.in.tum.de/~grust/
http://db.inf.uni-tuebingen.de

Torsten Grust U Tübingen2

Apologies, I am only 
a database person

Torsten Grust U Tübingen2

It is in this connection worth noticing
that in the Comm.ACM the papers
on data bases […] are of markedly lower
linguistic quality than the others.

—Edsger Dijkstra (EWD691)

Apologies, I am only 
a database person

Torsten Grust U Tübingen

The point is that the way in which the database
management experts tackle the problems seems to be
so grossly inadequate. They seem to form an inbred
crowd with very little knowledge of computing science
in general, who tackle their problems primarily
politically instead of scientifically.

Often they seemed to be mentally trapped by the
intricacies of early, rather ad hoc solutions to rather
accidental problems; as soon as such a technique has
received a name, it becomes "a database concept". 3

—Edsger Dijkstra (EWD577)

Torsten Grust U Tübingen

Apologies, I am only 
a database person

Torsten Grust U Tübingen

so grossly inadequate. They seem to form an inbred
crowd with very little knowledge of computing science
in general, who tackle their problems primarily
politically instead of scientifically.

Often they seemed to be mentally trapped by the
intricacies of early, rather ad hoc solutions to rather
accidental problems; as soon as such a technique has
received a name, it becomes "a database concept".
And a totally inadequate use of language, sharpening
their pencils with a blunt axe.

I learned a few things about Databases. I learned
—or: had my tentative impression confirmed— that
the term "Database Technology", although sometimes
used, is immature, for there is hardly any underlying 3

—Edsger Dijkstra (EWD577)

Torsten Grust U Tübingen

Apologies, I am only 
a database person

Torsten Grust U Tübingen

accidental problems; as soon as such a technique has
received a name, it becomes "a database concept".
And a totally inadequate use of language, sharpening
their pencils with a blunt axe.

I learned a few things about Databases. I learned
—or: had my tentative impression confirmed— that
the term "Database Technology", although sometimes
used, is immature, for there is hardly any underlying
"science" that could justify the use of the term
"technology".

3

—Edsger Dijkstra (EWD577)

Torsten Grust U Tübingen

Apologies, I am only 
a database person

Torsten Grust U Tübingen

Comprehension Syntax

4

[h x | x ← xs, p x]

Torsten Grust U Tübingen

Comprehension Syntax

4

[h x | x ← xs, p x]

1. Successively draw bindings for x from domain xs,

2. for those bindings that pass filter p,

3. evaluate head h,

head filter

generator

Torsten Grust U Tübingen

Comprehension Syntax

4

[h x | x ← xs, p x]

1. Successively draw bindings for x from domain xs,

2. for those bindings that pass filter p,

3. evaluate head h,

4. collect results to form a list.

head filter

generator

Torsten Grust U Tübingen

Comprehension Syntax

4

[h x | x ← xs, p x]

1. Successively draw bindings for x from domain xs,

2. for those bindings that pass filter p,

3. evaluate head h,

4. collect results to form

M

an M.

head filter

generator

Torsten Grust U Tübingen

Extension vs. Intension

5

{ }

Torsten Grust U Tübingen

Extension vs. Intension

5

I, III, V, VII, IX{ }

Torsten Grust U Tübingen

Extension vs. Intension

5

I, III, V, VII, IX

[roman x | x ← [1…10], odd x] set

{ }

Torsten Grust U Tübingen

In the Beginning …

6

Relational Completeness of Data Base Sublanguages
E. F. Codd, IBM Research Report RJ987, 1972

Torsten Grust U Tübingen

In the Beginning …

6

Relational Completeness of Data Base Sublanguages
E. F. Codd, IBM Research Report RJ987, 1972

head filter

generator

Torsten Grust U Tübingen

Today’s XQuery 3.0

7

Core of XQuery: versatile FLWOR expression

XQuery 3.0: An XML Query Language
D. Chamberlin et al., W3C Recommendation, April 2014

Torsten Grust U Tübingen

Today’s XQuery 3.0

7

Core of XQuery: versatile FLWOR expression

XQuery 3.0: An XML Query Language
D. Chamberlin et al., W3C Recommendation, April 2014head

generator

filter

Torsten Grust U Tübingen

Today’s XQuery 3.0

7

Core of XQuery: versatile FLWOR expression

XQuery 3.0: An XML Query Language
D. Chamberlin et al., W3C Recommendation, April 2014head

generator

generator head

filter

Torsten Grust U Tübingen

Early XQuery

8

A Data Model and Algebra for XQuery
M. Fernandez et al., October 2003

Torsten Grust U Tübingen

Early XQuery

8

A Data Model and Algebra for XQuery
M. Fernandez et al., October 2003

generator

head filter

Torsten Grust U Tübingen

1 module Query where
2 import Prelude hiding (elem,index)
3
4 -- Data Model: Constructors --
5
6 text :: String -> Node
7 elem :: Tag -> [Node] -> Node
8 ref :: Node -> Node
9
10 year0 :: Node
11 year0 = elem "@year" [text "1999"]
12
13 book0 :: Node
14 book0 = elem "book" [
15 elem "@year" [text "1999"],
16 elem "title" [text "Data on the Web"],
17 elem "author" [text "Abiteboul"],
18 elem "author" [text "Buneman"],
19 elem "author" [text "Suciu"]]
20
21 bib0 :: Node
22 bib0 = elem "bib" [
23 elem "book" [
24 elem "@year" [text "1999"],
25 elem "title" [text "Data on the Web"],

An XQuery Nucleus

9Torsten Grust U Tübingen

Torsten Grust U Tübingen

An XQuery Nucleus

9Torsten Grust U Tübingen

• ≈ 430 lines of Haskell (300+ lines of examples)

• Implements a complete XQuery core,  
including tree construction and traversal

• List comprehensions express path navigation, FLOWR,
grouping/aggregation, quantification

Torsten Grust U Tübingen

LINQ

10

Comprehension syntax deeply embedded into
C#, with monad-based semantics organized
around SelectMany (aka >>=, flatmap)

The World According to LINQ
E. Meijer, October 2011

Torsten Grust U Tübingen

LINQ

10

Comprehension syntax deeply embedded into
C#, with monad-based semantics organized
around SelectMany (aka >>=, flatmap)

The World According to LINQ
E. Meijer, October 2011

generator

head

filter

Torsten Grust U Tübingen

Emma

11

Implicit Parallelism through Deep Language Embedding
A. Alexandrov et al., SIGMOD 2015

Deep embedding of comprehensions in Scala,
compiles to Apache Flink / Spark

Torsten Grust U Tübingen

Emma

11

Implicit Parallelism through Deep Language Embedding
A. Alexandrov et al., SIGMOD 2015

Deep embedding of comprehensions in Scala,
compiles to Apache Flink / Spark

generator

head

filter

Torsten Grust U Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

Torsten Grust U Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

generator head

filter

Torsten Grust U Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

generator head

filter

Torsten Grust U Tübingen

Pig Latin

12

Compiles to sequences of Map/Reduce jobs

Told you so.

generator head

filter

Torsten Grust U Tübingen

SQL

13

Query Q4 of the TPC-H OLAP benchmark

Torsten Grust U Tübingen

SQL

13

Query Q4 of the TPC-H OLAP benchmark

generator
head

filter

Torsten Grust U Tübingen

SQL

13

Query Q4 of the TPC-H OLAP benchmark

generator
head

filter

head
generator

filter

Torsten Grust U Tübingen

SQL

13

Query Q4 of the TPC-H OLAP benchmark

generator
head

filter

head
generator

filter

generator head

head filter
generator

head filtergenerator

Torsten Grust U Tübingen14

Torsten Grust U Tübingen14

SQL

Torsten Grust U Tübingen

One Way to Teach SQL

15

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

∅

⨄

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

SELECT MAX(A)
FROM S

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

∅

⨄

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

SELECT MAX(A)
FROM S

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

c ← –∞;
foreach x ∈ S do
 c ← max2(c,x.A);
return c;

∅

⨄

–∞

max2

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

SELECT MAX(A)
FROM S

0 < ALL(SELECT A
 FROM S)

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

c ← –∞;
foreach x ∈ S do
 c ← max2(c,x.A);
return c;

∅

⨄

–∞

max2

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

SELECT MAX(A)
FROM S

0 < ALL(SELECT A
 FROM S)

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

c ← –∞;
foreach x ∈ S do
 c ← max2(c,x.A);
return c;

c ← true;
foreach x ∈ S do
 c ← c ∧ (0 < x.A);
return c;

∅

⨄

–∞

max2

true

∧

Torsten Grust U Tübingen

One Way to Teach SQL

15

SELECT A, B
FROM S

SELECT MAX(A)
FROM S

0 < ALL(SELECT A
 FROM S)

c ← ∅;
foreach x ∈ S do
 c ← c ⨄ {(x.A,x.B)};
return c;

c ← –∞;
foreach x ∈ S do
 c ← max2(c,x.A);
return c;

c ← true;
foreach x ∈ S do
 c ← c ∧ (0 < x.A);
return c;

∅

⨄

–∞

max2

true

∧

Torsten Grust U Tübingen

One Program Form for SQL

16

Torsten Grust U Tübingen

One Program Form for SQL

16

c ← z;
foreach x ∈ xs do
 c ← f (c ,x);
return c;

fold(z,f,xs) ≡

Torsten Grust U Tübingen

One Program Form for SQL

16

M carrier liftM zM ⊕M

bag bag t {⋅} ∅ ⊎
set set t {⋅} ∅ ∪
list list t [⋅] [] ++
all bool id TRUE ∧

some bool id FALSE ∨
sum num id 0 +
max t (ordered) id -∞ max2
min t (ordered) id ∞ min2

true
false

c ← z;
foreach x ∈ xs do
 c ← f (c ,x);
return c;

fold(z,f,xs) ≡

Torsten Grust U Tübingen

One Program Form for SQL

17

Torsten Grust U Tübingen

One Program Form for SQL

17

SELECT A
FROM S
WHERE A > B

fold(∅,⊕,S) with
 ⊕(c,x) = c ⊎ (if (x.A > x.B) {x.A}
 else ∅)

Torsten Grust U Tübingen

One Program Form for SQL

17

SELECT A
FROM S
WHERE A > B

SELECT x.A,y.B
FROM R x,S y

fold(∅,⊕,S) with
 ⊕(c,x) = c ⊎ (if (x.A > x.B) {x.A}
 else ∅)

fold(∅,⊕,R) with
 ⊕(c,x) = c ⊎ fold(∅,⊗,S) with
 ⊗(d,y) = d ⊎ {(x.A,y.B)}

Torsten Grust U Tübingen

fold(,,) Gets Ugly Quickly

18

Torsten Grust U Tübingen

fold(,,) Gets Ugly Quickly

18

SELECT COUNT(*)
FROM R x
WHERE EXISTS (SELECT y
 FROM S y
 WHERE x.A = y.B)

fold(0,⊕,fold(∅,⊗,R)) with
with ⊕(c,_) = c + 1

⊗(d,x) = d ⊎ if (fold(false,⊙,S)) {x} else ∅
with ⊙(e,y) = e ∨ (x.A = y.B)

Torsten Grust U Tübingen

fold(,,) Gets Ugly Quickly

18

SELECT COUNT(*)
FROM R x
WHERE EXISTS (SELECT y
 FROM S y
 WHERE x.A = y.B)

fold(0,⊕,fold(∅,⊗,R)) with
with ⊕(c,_) = c + 1

⊗(d,x) = d ⊎ if (fold(false,⊙,S)) {x} else ∅
with ⊙(e,y) = e ∨ (x.A = y.B)

Algebraic
Wonderland.

Torsten Grust U Tübingen

fold(,,) Gets Ugly Quickly

18

SELECT COUNT(*)
FROM R x
WHERE EXISTS (SELECT y
 FROM S y
 WHERE x.A = y.B)

fold(0,⊕,fold(∅,⊗,R)) with
with ⊕(c,_) = c + 1

⊗(d,x) = d ⊎ if (fold(false,⊙,S)) {x} else ∅
with ⊙(e,y) = e ∨ (x.A = y.B)

Algebraic
Wonderland.

REJECT!

Torsten Grust U Tübingen

Comprehension Semantics

19

Torsten Grust U Tübingen

Comprehension Semantics

19

[e | v1 ← e1, q]M

[e |]M

[e | p, q]M

Torsten Grust U Tübingen

Comprehension Semantics

19

[e | v1 ← e1, q]M

[e |]M

[e | p, q]M

liftM(e)

≡

≡

≡

Torsten Grust U Tübingen

Comprehension Semantics

19

[e | v1 ← e1, q]M

[e |]M

[e | p, q]M

liftM(e)

if (p) [e | q]M else zM

fold(zM,⊗,e1) with
 ⊗(c,v1) = c ⊕M [e | q]M

≡

≡

≡

Torsten Grust U Tübingen

Comprehensible SQL

20

Torsten Grust U Tübingen

Comprehensible SQL

20

SELECT y
FROM S y
WHERE x.A = y.B

EXISTS (

)

SELECT COUNT(*)
FROM R x
WHERE

Torsten Grust U Tübingen

Comprehensible SQL

20

SELECT y
FROM S y
WHERE x.A = y.B

EXISTS (

)

SELECT COUNT(*)
FROM R x
WHERE

[y | y ← S, x.A = y.B]bag

Torsten Grust U Tübingen

Comprehensible SQL

20

SELECT y
FROM S y
WHERE x.A = y.B

EXISTS (

)

SELECT COUNT(*)
FROM R x
WHERE

[y | y ← S, x.A = y.B]bag[true | _ ←]some

Torsten Grust U Tübingen

Comprehensible SQL

20

[1 | x ← R,
]sum

SELECT y
FROM S y
WHERE x.A = y.B

EXISTS (

)

SELECT COUNT(*)
FROM R x
WHERE

[y | y ← S, x.A = y.B]bag[true | _ ←]some

Torsten Grust U Tübingen

Comprehensible SQL

20

[1 | x ← R, [x.A = y.B | y ← S]some]sum

[1 | x ← R,
]sum

SELECT y
FROM S y
WHERE x.A = y.B

EXISTS (

)

SELECT COUNT(*)
FROM R x
WHERE

[y | y ← S, x.A = y.B]bag[true | _ ←]some

Torsten Grust U Tübingen

Comprehension Unnesting

21

[e | qs1, v ← []N, qs3]M

[e | qs1, v ← [e2]N, qs3]M

[e | qs1, v ← [e2 | qs2]N, qs3]M

[e | qs1, [e2 | qs2]some, qs3]M

Torsten Grust U Tübingen

Comprehension Unnesting

21

[e | qs1, v ← []N, qs3]M

[e | qs1, v ← [e2]N, qs3]M

[e | qs1, v ← [e2 | qs2]N, qs3]M

[e | qs1, [e2 | qs2]some, qs3]M

[]M

[e[e2/v] | qs1, qs3[e2/v]]M

[e[e2/v] | qs1, qs2, qs3[e2/v]]M

[e | qs1, qs2, e2, qs3]M
 (⊕M idempotent)

Torsten Grust U Tübingen22

On Optimizing an SQL-like Nested Query
W. Kim, ACM TODS, 1982

When Syntax Distracts

Torsten Grust U Tübingen22

On Optimizing an SQL-like Nested Query
W. Kim, ACM TODS, 1982

When Syntax Distracts

Torsten Grust U Tübingen22

On Optimizing an SQL-like Nested Query
W. Kim, ACM TODS, 1982

When Syntax Distracts

Implemented in most RDBMSs to this day

Torsten Grust U Tübingen

When Syntax Distracts

23

• Syntactic classification of nested SQL queries into  
types N, Nx, D, J, A, JA, JA(NA), JA(AA), JA(AN), …

• Classes are associated with their particular 
SQL–level unnesting rewrites.

Torsten Grust U Tübingen

When Syntax Distracts

23

• Syntactic classification of nested SQL queries into  
types N, Nx, D, J, A, JA, JA(NA), JA(AA), JA(AN), …

• Classes are associated with their particular 
SQL–level unnesting rewrites.

Torsten Grust U Tübingen

When Syntax Distracts

24

SELECT DISTINCT f(x)
FROM R AS x
WHERE p(x) IN (SELECT g(y)
 FROM S AS y
 WHERE q(x,y))

Torsten Grust U Tübingen

When Syntax Distracts

24

SELECT DISTINCT f(x)
FROM R AS x
WHERE p(x) IN (SELECT g(y)
 FROM S AS y
 WHERE q(x,y))

[f(x) | x ← R,
 [p(x) = v | v ← [g(y)| y ← S, q(x,y)]bag]some]set

Torsten Grust U Tübingen

When Syntax Distracts

24

SELECT DISTINCT f(x)
FROM R AS x
WHERE p(x) IN (SELECT g(y)
 FROM S AS y
 WHERE q(x,y))

[f(x) | x ← R,
 [p(x) = g(y) | y ← S, q(x,y)]some]set

Torsten Grust U Tübingen

When Syntax Distracts

24

SELECT DISTINCT f(x)
FROM R AS x
WHERE p(x) IN (SELECT g(y)
 FROM S AS y
 WHERE q(x,y))

SELECT DISTINCT f(x)
FROM R AS x, S AS y
WHERE q(x,y)
AND p(x) = g(y)

[f(x) | x ← R, y ← S, q(x,y), p(x) = g(y)]set

Torsten Grust U Tübingen

A Zoo of
Query Representations

25

Groupwise Processing of Relational Queries

Damianos Chatziantoniou” Kenneth A. ROSS*
Department of Computer Science, Columbia University

damia,nos,kar@cs.columbia.edu

Abstract

In this paper, we define and examine a particu-
lar class of queries called group queries. Group
queries are natural queries in many decision-
support applications. The main characteristic of a
group query is that it can be executed in a group-
by-group fashion. In other words, the underlying
relation(s) can be partitioned (based on some set
of attributes) into disjoint groups, and each group
can be processed separately. We give a syntactic
criterion to identify these queries and prove its
sufficiency. We also prove the strong result that
every group query has an equivalent formulation
that satisfies our syntactic criterion. We describe
a general evaluation technique for group queries,
and demonstrate how an optimizer can determine
this plan. We then consider more complex queries
whose components are group queries with poten-
tially different partitioning attributes. We give
two methods to identify group query components
within such a query. We also give some per-
formance results for group queries expressed in
standard SQL, comparing a commercial database
system with our optimized plan on top of the
same commercial system. These results indicate
that there are significant potential performance
improvements.

‘This research was supported by a grant from the AT&T
Foundation, by a David and Lucile Packard Foundation Fel-
lowship in Science and Engineering, by a Sloan Foundation
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF
Young Investigator award.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

With the recent interest in decision support systems and
data warehousing has come a demand for techniques to
evaluate and optimize very complex relational queries in-
volving both aggregation and joins. Current commercial
systems do not find good plans for many very complex
queries.

In this paper we examine a particular class of complex
queries, called group queries. Many complex decision
support queries describe the following idea: for each value z
in a dimension D (e.g. for each customer), evaluate a query
Q’. This query Q’ can be something simple (e.g. compute
avg(sales)) or complex (e.g. include joins, selections, fur-
ther aggregations, etc). To specify this kind of complex
query in SQL, one has to embed D within many places
of a complex piece of SQL code. This may have many
drawbacks in terms of performance if the optimizer is not
aware of the query’s structure. This particular structure
is often amenable to the following evaluation strategy:
partition the data along dimension D, and evaluate Q’
independently on each partition. Therefore it is important
to be able to identify whether an SQL specification has the
form mentioned above. In that case, that SQL specification
constitutes a group query. Our main contributions are:

Group Queries (Section 2) We define the concept of
a group query. A query Q is a group query with respect
to certain partitioning attributes S if, for all databases,
it is possible to answer Q by (a) partitioning the data
according to the values for attribute(s) S, (b) evaluating
another query Q’ on each partition of the database, and (c)
taking the union of the results. Common decision support
queries require complex operations within groups and not
just simple aggregation. We provide a syntactic criterion
for identifying group queries and prove its sufficiency. We
also prove the surprising result that every group query can
be expressed in a way that satisfies our syntactic criterion.
We consider arbitrary relational queries expressed in SQL,
and do not restrict ourselves to a special syntax.

Execution Plan (Section 3) We demonstrate how a
group query can be evaluated by partitioning the data and
applying a significantly simpler query to each partition.
Further, this evaluation plan can be automatically gener-
ated given a query that satisfies the criterion. The main
benefits of this approach are that the simpler query is often
much easier to optimize and evaluate, and often partitions

476

Groupwise Processing of Relational Queries
D. Chatziantoniou, K.A. Ross, VLDB 1997

Torsten Grust U Tübingen

A Zoo of
Query Representations

25

Groupwise Processing of Relational Queries

Damianos Chatziantoniou” Kenneth A. ROSS*
Department of Computer Science, Columbia University

damia,nos,kar@cs.columbia.edu

Abstract

In this paper, we define and examine a particu-
lar class of queries called group queries. Group
queries are natural queries in many decision-
support applications. The main characteristic of a
group query is that it can be executed in a group-
by-group fashion. In other words, the underlying
relation(s) can be partitioned (based on some set
of attributes) into disjoint groups, and each group
can be processed separately. We give a syntactic
criterion to identify these queries and prove its
sufficiency. We also prove the strong result that
every group query has an equivalent formulation
that satisfies our syntactic criterion. We describe
a general evaluation technique for group queries,
and demonstrate how an optimizer can determine
this plan. We then consider more complex queries
whose components are group queries with poten-
tially different partitioning attributes. We give
two methods to identify group query components
within such a query. We also give some per-
formance results for group queries expressed in
standard SQL, comparing a commercial database
system with our optimized plan on top of the
same commercial system. These results indicate
that there are significant potential performance
improvements.

‘This research was supported by a grant from the AT&T
Foundation, by a David and Lucile Packard Foundation Fel-
lowship in Science and Engineering, by a Sloan Foundation
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF
Young Investigator award.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

With the recent interest in decision support systems and
data warehousing has come a demand for techniques to
evaluate and optimize very complex relational queries in-
volving both aggregation and joins. Current commercial
systems do not find good plans for many very complex
queries.

In this paper we examine a particular class of complex
queries, called group queries. Many complex decision
support queries describe the following idea: for each value z
in a dimension D (e.g. for each customer), evaluate a query
Q’. This query Q’ can be something simple (e.g. compute
avg(sales)) or complex (e.g. include joins, selections, fur-
ther aggregations, etc). To specify this kind of complex
query in SQL, one has to embed D within many places
of a complex piece of SQL code. This may have many
drawbacks in terms of performance if the optimizer is not
aware of the query’s structure. This particular structure
is often amenable to the following evaluation strategy:
partition the data along dimension D, and evaluate Q’
independently on each partition. Therefore it is important
to be able to identify whether an SQL specification has the
form mentioned above. In that case, that SQL specification
constitutes a group query. Our main contributions are:

Group Queries (Section 2) We define the concept of
a group query. A query Q is a group query with respect
to certain partitioning attributes S if, for all databases,
it is possible to answer Q by (a) partitioning the data
according to the values for attribute(s) S, (b) evaluating
another query Q’ on each partition of the database, and (c)
taking the union of the results. Common decision support
queries require complex operations within groups and not
just simple aggregation. We provide a syntactic criterion
for identifying group queries and prove its sufficiency. We
also prove the surprising result that every group query can
be expressed in a way that satisfies our syntactic criterion.
We consider arbitrary relational queries expressed in SQL,
and do not restrict ourselves to a special syntax.

Execution Plan (Section 3) We demonstrate how a
group query can be evaluated by partitioning the data and
applying a significantly simpler query to each partition.
Further, this evaluation plan can be automatically gener-
ated given a query that satisfies the criterion. The main
benefits of this approach are that the simpler query is often
much easier to optimize and evaluate, and often partitions

476

Groupwise Processing of Relational Queries
D. Chatziantoniou, K.A. Ross, VLDB 1997

SELECT f(x), agg(g(x))
FROM R AS x
GROUP BY f(x)

Torsten Grust U Tübingen

A Zoo of
Query Representations

25

Groupwise Processing of Relational Queries

Damianos Chatziantoniou” Kenneth A. ROSS*
Department of Computer Science, Columbia University

damia,nos,kar@cs.columbia.edu

Abstract

In this paper, we define and examine a particu-
lar class of queries called group queries. Group
queries are natural queries in many decision-
support applications. The main characteristic of a
group query is that it can be executed in a group-
by-group fashion. In other words, the underlying
relation(s) can be partitioned (based on some set
of attributes) into disjoint groups, and each group
can be processed separately. We give a syntactic
criterion to identify these queries and prove its
sufficiency. We also prove the strong result that
every group query has an equivalent formulation
that satisfies our syntactic criterion. We describe
a general evaluation technique for group queries,
and demonstrate how an optimizer can determine
this plan. We then consider more complex queries
whose components are group queries with poten-
tially different partitioning attributes. We give
two methods to identify group query components
within such a query. We also give some per-
formance results for group queries expressed in
standard SQL, comparing a commercial database
system with our optimized plan on top of the
same commercial system. These results indicate
that there are significant potential performance
improvements.

‘This research was supported by a grant from the AT&T
Foundation, by a David and Lucile Packard Foundation Fel-
lowship in Science and Engineering, by a Sloan Foundation
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF
Young Investigator award.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

With the recent interest in decision support systems and
data warehousing has come a demand for techniques to
evaluate and optimize very complex relational queries in-
volving both aggregation and joins. Current commercial
systems do not find good plans for many very complex
queries.

In this paper we examine a particular class of complex
queries, called group queries. Many complex decision
support queries describe the following idea: for each value z
in a dimension D (e.g. for each customer), evaluate a query
Q’. This query Q’ can be something simple (e.g. compute
avg(sales)) or complex (e.g. include joins, selections, fur-
ther aggregations, etc). To specify this kind of complex
query in SQL, one has to embed D within many places
of a complex piece of SQL code. This may have many
drawbacks in terms of performance if the optimizer is not
aware of the query’s structure. This particular structure
is often amenable to the following evaluation strategy:
partition the data along dimension D, and evaluate Q’
independently on each partition. Therefore it is important
to be able to identify whether an SQL specification has the
form mentioned above. In that case, that SQL specification
constitutes a group query. Our main contributions are:

Group Queries (Section 2) We define the concept of
a group query. A query Q is a group query with respect
to certain partitioning attributes S if, for all databases,
it is possible to answer Q by (a) partitioning the data
according to the values for attribute(s) S, (b) evaluating
another query Q’ on each partition of the database, and (c)
taking the union of the results. Common decision support
queries require complex operations within groups and not
just simple aggregation. We provide a syntactic criterion
for identifying group queries and prove its sufficiency. We
also prove the surprising result that every group query can
be expressed in a way that satisfies our syntactic criterion.
We consider arbitrary relational queries expressed in SQL,
and do not restrict ourselves to a special syntax.

Execution Plan (Section 3) We demonstrate how a
group query can be evaluated by partitioning the data and
applying a significantly simpler query to each partition.
Further, this evaluation plan can be automatically gener-
ated given a query that satisfies the criterion. The main
benefits of this approach are that the simpler query is often
much easier to optimize and evaluate, and often partitions

476

Groupwise Processing of Relational Queries
D. Chatziantoniou, K.A. Ross, VLDB 1997

[⟨f(x), [g(y) | y ← R, f(y) = f(x)]agg⟩ | x ← R]set

Torsten Grust U Tübingen

A Zoo of
Query Representations

25

Groupwise Processing of Relational Queries

Damianos Chatziantoniou” Kenneth A. ROSS*
Department of Computer Science, Columbia University

damia,nos,kar@cs.columbia.edu

Abstract

In this paper, we define and examine a particu-
lar class of queries called group queries. Group
queries are natural queries in many decision-
support applications. The main characteristic of a
group query is that it can be executed in a group-
by-group fashion. In other words, the underlying
relation(s) can be partitioned (based on some set
of attributes) into disjoint groups, and each group
can be processed separately. We give a syntactic
criterion to identify these queries and prove its
sufficiency. We also prove the strong result that
every group query has an equivalent formulation
that satisfies our syntactic criterion. We describe
a general evaluation technique for group queries,
and demonstrate how an optimizer can determine
this plan. We then consider more complex queries
whose components are group queries with poten-
tially different partitioning attributes. We give
two methods to identify group query components
within such a query. We also give some per-
formance results for group queries expressed in
standard SQL, comparing a commercial database
system with our optimized plan on top of the
same commercial system. These results indicate
that there are significant potential performance
improvements.

‘This research was supported by a grant from the AT&T
Foundation, by a David and Lucile Packard Foundation Fel-
lowship in Science and Engineering, by a Sloan Foundation
Fellowship, by NSF CISE grant CDA-9625374, and by an NSF
Young Investigator award.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

With the recent interest in decision support systems and
data warehousing has come a demand for techniques to
evaluate and optimize very complex relational queries in-
volving both aggregation and joins. Current commercial
systems do not find good plans for many very complex
queries.

In this paper we examine a particular class of complex
queries, called group queries. Many complex decision
support queries describe the following idea: for each value z
in a dimension D (e.g. for each customer), evaluate a query
Q’. This query Q’ can be something simple (e.g. compute
avg(sales)) or complex (e.g. include joins, selections, fur-
ther aggregations, etc). To specify this kind of complex
query in SQL, one has to embed D within many places
of a complex piece of SQL code. This may have many
drawbacks in terms of performance if the optimizer is not
aware of the query’s structure. This particular structure
is often amenable to the following evaluation strategy:
partition the data along dimension D, and evaluate Q’
independently on each partition. Therefore it is important
to be able to identify whether an SQL specification has the
form mentioned above. In that case, that SQL specification
constitutes a group query. Our main contributions are:

Group Queries (Section 2) We define the concept of
a group query. A query Q is a group query with respect
to certain partitioning attributes S if, for all databases,
it is possible to answer Q by (a) partitioning the data
according to the values for attribute(s) S, (b) evaluating
another query Q’ on each partition of the database, and (c)
taking the union of the results. Common decision support
queries require complex operations within groups and not
just simple aggregation. We provide a syntactic criterion
for identifying group queries and prove its sufficiency. We
also prove the surprising result that every group query can
be expressed in a way that satisfies our syntactic criterion.
We consider arbitrary relational queries expressed in SQL,
and do not restrict ourselves to a special syntax.

Execution Plan (Section 3) We demonstrate how a
group query can be evaluated by partitioning the data and
applying a significantly simpler query to each partition.
Further, this evaluation plan can be automatically gener-
ated given a query that satisfies the criterion. The main
benefits of this approach are that the simpler query is often
much easier to optimize and evaluate, and often partitions

476

Groupwise Processing of Relational Queries
D. Chatziantoniou, K.A. Ross, VLDB 1997

Q f g agg R ≡

[⟨f(x), [g(y) | y ← R, f(y) = f(x)]agg⟩ | x ← R]set

Torsten Grust U Tübingen26

A Zoo of
Query Representations

Torsten Grust U Tübingen26

A Zoo of
Query Representations

Torsten Grust U Tübingen26

A Zoo of
Query Representations

Torsten Grust U Tübingen26

A Zoo of
Query Representations

Torsten Grust U Tübingen26

A Zoo of
Query Representations

Torsten Grust U Tübingen26

A Zoo of
Query Representations

SELECT agg(g(x))
FROM P AS x

P P P

Torsten Grust U Tübingen26

A Zoo of
Query Representations

[g(y) | y ← P]agg

Q’ g agg P ≡

P P P

Torsten Grust U Tübingen26

A Zoo of
Query Representations

[g(y) | y ← P]agg

Q’ g agg P ≡

P P P

Torsten Grust U Tübingen27

A Zoo of
Query Representations

Torsten Grust U Tübingen27

A Zoo of
Query Representations

applied separately to partitions of FYIJJG based in id,

and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View

Vl contains the average duration of the sections read in the
days before each access to the world section, and view V2
the average duration of the sections read in the days after.

We join Vl and V2 in order to get the result in single
tuples. The actual SQL formulation is omitted due to lack
of space and appears in [Cha97]. Once again, FYI-LOG
can be partitioned on id attribute and a simpler query can

be posed separately on each partition. We shall discuss
Query Q4 in Section 2.4.

2 Theoretical Framework
In this section, we introduce our terminology and define
what we mean by a group query. We give a syntactic
criterion for identifying group queries and prove that this
condition is sufficient. We also show that every group query

can be expressed in a form that satisfies our criterion.

2.1 Assumptions and Terminology

We assume that queries are written in terms of views, with
no subqueries. This is a valid assumption since there are
many ways to rewrite a subquery as a join of two (or more)
views [Kim82, Day87, SPLSG]. We initially assume that the
database contains a single relation R. (Multiple relations
will be considered in Section 2.4.) R may itself be a view
or the result of another query, but from our point of view it
is treated as an encapsulated table. (I.e., if R was a view,

then we don’t consider unfolding the definition of R into
queries over R.)

We shall define below the notion of a query graph. A
query graph has nodes that are relational operations. We
consider three kinds of relational operations:

Basic Blocks A basic block is some combination of
projections and selections applied to a join of relations. In

SQL such operations are expressed as SELECT-FROM-WHERE

queries without aggregates or attribute renaming. A base
relation is also treated as a basic block.

Aggregation Blocks An aggregation block is a sin-
gle aggregation operation specifying a set of grouping

attributes and a list of aggregate functions to be com-
puted over the groups. The aggregation can optionally

be followed by a selection. In SQL, such operations are
expressed as SELECT-FROM-GROUPBY-HAVING queries where
the SELECT clause includes all grouping attributes (plus

some aggregates), and the FROM clause contains a single
relation.

Set Blocks Set blocks express the set-oriented opera-
tions, namely union, intersection and difference of relations
with the same schema. The corresponding SQL constructs
are UNION, INTERSECT and EXCEPT.

Any relational query can be specified using these three
operations. A query can be split into two blocks if neces-
sary, for example if the query has both a WBERE clause and
a GROUPBY clause then we can rewrite it as an aggregation
block applied to a basic block. Note that we do not allow
constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed

to handle the renaming operator.)

Definition 2.1: (Query Graph) Suppose that we are
given a query Q. The nodes of the query graph for Q
are the relational operations (as defined above) used in Q
and its subviews. Basic blocks are written as rectangles,
aggregation blocks as circles, and set blocks as diamonds.
Every block is given a label corresponding to the view (or
relation) name of that block. There is an edge from node
labeled Ni to node labeled Ns if Ns is mentioned in the
FROM clause of Ni , or if Ns is an argument of a set operation
in Ni. An edge whose source is an aggregation block N is
labeled with the grouping attributes of N. Edges coming
out of a single basic block N are linked together with an
arc, and jointly labeled by the join condition of N. Edges
coming out of set blocks are not labeled. 0

A query graph is a directed acyclic graph with a single
source (root) node representing the query result. We shall
conventionally draw the graph with edges “pointing up.”
For single-relation databases, there will always be a single
sink node at the top of the picture. Figure 1 shows the
query graphs for queries Ql, and Q2. Notice the separation

of V2 and V3 from query Ql into basic blocks (V2B, V3B)
and aggregation blocks (V2A, V3A).

E), , O2 : join conditions. 0 : join condition.

(4 query Ql (b) query Q2

Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes
from the underlying relation R, and let D represent the

domain over which the tuples of S values range. For every

node N in the query graph and for x E D we write N(x)
to represent the answer at node N when the extension of
R is replaced by crs== (R). 0

Observe that the attributes in S do not have to be at-
tributes of the answer at node N for N(x) to be well-

defined. Also, observe that R = UzED R(z).

478

Torsten Grust U Tübingen27

A Zoo of
Query Representations

applied separately to partitions of FYIJJG based in id,

and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View

Vl contains the average duration of the sections read in the
days before each access to the world section, and view V2
the average duration of the sections read in the days after.

We join Vl and V2 in order to get the result in single
tuples. The actual SQL formulation is omitted due to lack
of space and appears in [Cha97]. Once again, FYI-LOG
can be partitioned on id attribute and a simpler query can

be posed separately on each partition. We shall discuss
Query Q4 in Section 2.4.

2 Theoretical Framework
In this section, we introduce our terminology and define
what we mean by a group query. We give a syntactic
criterion for identifying group queries and prove that this
condition is sufficient. We also show that every group query

can be expressed in a form that satisfies our criterion.

2.1 Assumptions and Terminology

We assume that queries are written in terms of views, with
no subqueries. This is a valid assumption since there are
many ways to rewrite a subquery as a join of two (or more)
views [Kim82, Day87, SPLSG]. We initially assume that the
database contains a single relation R. (Multiple relations
will be considered in Section 2.4.) R may itself be a view
or the result of another query, but from our point of view it
is treated as an encapsulated table. (I.e., if R was a view,

then we don’t consider unfolding the definition of R into
queries over R.)

We shall define below the notion of a query graph. A
query graph has nodes that are relational operations. We
consider three kinds of relational operations:

Basic Blocks A basic block is some combination of
projections and selections applied to a join of relations. In

SQL such operations are expressed as SELECT-FROM-WHERE

queries without aggregates or attribute renaming. A base
relation is also treated as a basic block.

Aggregation Blocks An aggregation block is a sin-
gle aggregation operation specifying a set of grouping

attributes and a list of aggregate functions to be com-
puted over the groups. The aggregation can optionally

be followed by a selection. In SQL, such operations are
expressed as SELECT-FROM-GROUPBY-HAVING queries where
the SELECT clause includes all grouping attributes (plus

some aggregates), and the FROM clause contains a single
relation.

Set Blocks Set blocks express the set-oriented opera-
tions, namely union, intersection and difference of relations
with the same schema. The corresponding SQL constructs
are UNION, INTERSECT and EXCEPT.

Any relational query can be specified using these three
operations. A query can be split into two blocks if neces-
sary, for example if the query has both a WBERE clause and
a GROUPBY clause then we can rewrite it as an aggregation
block applied to a basic block. Note that we do not allow
constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed

to handle the renaming operator.)

Definition 2.1: (Query Graph) Suppose that we are
given a query Q. The nodes of the query graph for Q
are the relational operations (as defined above) used in Q
and its subviews. Basic blocks are written as rectangles,
aggregation blocks as circles, and set blocks as diamonds.
Every block is given a label corresponding to the view (or
relation) name of that block. There is an edge from node
labeled Ni to node labeled Ns if Ns is mentioned in the
FROM clause of Ni , or if Ns is an argument of a set operation
in Ni. An edge whose source is an aggregation block N is
labeled with the grouping attributes of N. Edges coming
out of a single basic block N are linked together with an
arc, and jointly labeled by the join condition of N. Edges
coming out of set blocks are not labeled. 0

A query graph is a directed acyclic graph with a single
source (root) node representing the query result. We shall
conventionally draw the graph with edges “pointing up.”
For single-relation databases, there will always be a single
sink node at the top of the picture. Figure 1 shows the
query graphs for queries Ql, and Q2. Notice the separation

of V2 and V3 from query Ql into basic blocks (V2B, V3B)
and aggregation blocks (V2A, V3A).

E), , O2 : join conditions. 0 : join condition.

(4 query Ql (b) query Q2

Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes
from the underlying relation R, and let D represent the

domain over which the tuples of S values range. For every

node N in the query graph and for x E D we write N(x)
to represent the answer at node N when the extension of
R is replaced by crs== (R). 0

Observe that the attributes in S do not have to be at-
tributes of the answer at node N for N(x) to be well-

defined. Also, observe that R = UzED R(z).

478

applied separately to partitions of FYIJJG based in id, and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View Vl contains the average duration of the sections read in the days before each access to the world section, and view V2 the average duration of the sections read in the days after. We join Vl and V2 in order to get the result in single tuples. The actual SQL formulation is omitted due to lack of space and appears in [Cha97]. Once again, FYI-LOG can be partitioned on id attribute and a simpler query can be posed separately on each partition. We shall discuss Query Q4 in Section 2.4.

2 Theoretical Framework
In this section, we introduce our terminology and define what we mean by a group query. We give a syntactic criterion for identifying group queries and prove that this condition is sufficient. We also show that every group query can be expressed in a form that satisfies our criterion.

2.1 Assumptions and Terminology
We assume that queries are written in terms of views, with no subqueries. This is a valid assumption since there are many ways to rewrite a subquery as a join of two (or more) views [Kim82, Day87, SPLSG]. We initially assume that the database contains a single relation R. (Multiple relations will be considered in Section 2.4.) R may itself be a view or the result of another query, but from our point of view it is treated as an encapsulated table. (I.e., if R was a view, then we don’t consider unfolding the definition of R into queries over R.)

We shall define below the notion of a query graph. A query graph has nodes that are relational operations. We consider three kinds of relational operations:
Basic Blocks A basic block is some combination of projections and selections applied to a join of relations. In SQL such operations are expressed as SELECT-FROM-WHERE queries without aggregates or attribute renaming. A base relation is also treated as a basic block.
Aggregation Blocks An aggregation block is a sin- gle aggregation operation specifying a set of grouping attributes and a list of aggregate functions to be com- puted over the groups. The aggregation can optionally be followed by a selection. In SQL, such operations are expressed as SELECT-FROM-GROUPBY-HAVING queries where the SELECT clause includes all grouping attributes (plus some aggregates), and the FROM clause contains a single relation.

Set Blocks Set blocks express the set-oriented opera- tions, namely union, intersection and difference of relations with the same schema. The corresponding SQL constructs are UNION, INTERSECT and EXCEPT.
Any relational query can be specified using these three operations. A query can be split into two blocks if neces- sary, for example if the query has both a WBERE clause and a GROUPBY clause then we can rewrite it as an aggregation block applied to a basic block. Note that we do not allow constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed to handle the renaming operator.)

Definition 2.1: (Query Graph) Suppose that we are given a query Q. The nodes of the query graph for Q are the relational operations (as defined above) used in Q and its subviews. Basic blocks are written as rectangles, aggregation blocks as circles, and set blocks as diamonds. Every block is given a label corresponding to the view (or relation) name of that block. There is an edge from node labeled Ni to node labeled Ns if Ns is mentioned in the FROM clause of Ni , or if Ns is an argument of a set operation in Ni. An edge whose source is an aggregation block N is labeled with the grouping attributes of N. Edges coming out of a single basic block N are linked together with an arc, and jointly labeled by the join condition of N. Edges coming out of set blocks are not labeled. 0

A query graph is a directed acyclic graph with a single source (root) node representing the query result. We shall conventionally draw the graph with edges “pointing up.” For single-relation databases, there will always be a single sink node at the top of the picture. Figure 1 shows the query graphs for queries Ql, and Q2. Notice the separation of V2 and V3 from query Ql into basic blocks (V2B, V3B) and aggregation blocks (V2A, V3A).

E), , O2 : join conditions. 0 : join condition.

(4 query Ql (b) query Q2
Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes from the underlying relation R, and let D represent the domain over which the tuples of S values range. For every node N in the query graph and for x E D we write N(x) to represent the answer at node N when the extension of R is replaced by crs== (R). 0

Observe that the attributes in S do not have to be at- tributes of the answer at node N for N(x) to be well- defined. Also, observe that R = UzED R(z).

478

Torsten Grust U Tübingen27

A Zoo of
Query Representations

applied separately to partitions of FYIJJG based in id,

and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View

Vl contains the average duration of the sections read in the
days before each access to the world section, and view V2
the average duration of the sections read in the days after.

We join Vl and V2 in order to get the result in single
tuples. The actual SQL formulation is omitted due to lack
of space and appears in [Cha97]. Once again, FYI-LOG
can be partitioned on id attribute and a simpler query can

be posed separately on each partition. We shall discuss
Query Q4 in Section 2.4.

2 Theoretical Framework
In this section, we introduce our terminology and define
what we mean by a group query. We give a syntactic
criterion for identifying group queries and prove that this
condition is sufficient. We also show that every group query

can be expressed in a form that satisfies our criterion.

2.1 Assumptions and Terminology

We assume that queries are written in terms of views, with
no subqueries. This is a valid assumption since there are
many ways to rewrite a subquery as a join of two (or more)
views [Kim82, Day87, SPLSG]. We initially assume that the
database contains a single relation R. (Multiple relations
will be considered in Section 2.4.) R may itself be a view
or the result of another query, but from our point of view it
is treated as an encapsulated table. (I.e., if R was a view,

then we don’t consider unfolding the definition of R into
queries over R.)

We shall define below the notion of a query graph. A
query graph has nodes that are relational operations. We
consider three kinds of relational operations:

Basic Blocks A basic block is some combination of
projections and selections applied to a join of relations. In

SQL such operations are expressed as SELECT-FROM-WHERE

queries without aggregates or attribute renaming. A base
relation is also treated as a basic block.

Aggregation Blocks An aggregation block is a sin-
gle aggregation operation specifying a set of grouping

attributes and a list of aggregate functions to be com-
puted over the groups. The aggregation can optionally

be followed by a selection. In SQL, such operations are
expressed as SELECT-FROM-GROUPBY-HAVING queries where
the SELECT clause includes all grouping attributes (plus

some aggregates), and the FROM clause contains a single
relation.

Set Blocks Set blocks express the set-oriented opera-
tions, namely union, intersection and difference of relations
with the same schema. The corresponding SQL constructs
are UNION, INTERSECT and EXCEPT.

Any relational query can be specified using these three
operations. A query can be split into two blocks if neces-
sary, for example if the query has both a WBERE clause and
a GROUPBY clause then we can rewrite it as an aggregation
block applied to a basic block. Note that we do not allow
constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed

to handle the renaming operator.)

Definition 2.1: (Query Graph) Suppose that we are
given a query Q. The nodes of the query graph for Q
are the relational operations (as defined above) used in Q
and its subviews. Basic blocks are written as rectangles,
aggregation blocks as circles, and set blocks as diamonds.
Every block is given a label corresponding to the view (or
relation) name of that block. There is an edge from node
labeled Ni to node labeled Ns if Ns is mentioned in the
FROM clause of Ni , or if Ns is an argument of a set operation
in Ni. An edge whose source is an aggregation block N is
labeled with the grouping attributes of N. Edges coming
out of a single basic block N are linked together with an
arc, and jointly labeled by the join condition of N. Edges
coming out of set blocks are not labeled. 0

A query graph is a directed acyclic graph with a single
source (root) node representing the query result. We shall
conventionally draw the graph with edges “pointing up.”
For single-relation databases, there will always be a single
sink node at the top of the picture. Figure 1 shows the
query graphs for queries Ql, and Q2. Notice the separation

of V2 and V3 from query Ql into basic blocks (V2B, V3B)
and aggregation blocks (V2A, V3A).

E), , O2 : join conditions. 0 : join condition.

(4 query Ql (b) query Q2

Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes
from the underlying relation R, and let D represent the

domain over which the tuples of S values range. For every

node N in the query graph and for x E D we write N(x)
to represent the answer at node N when the extension of
R is replaced by crs== (R). 0

Observe that the attributes in S do not have to be at-
tributes of the answer at node N for N(x) to be well-

defined. Also, observe that R = UzED R(z).

478

applied separately to partitions of FYIJJG based in id, and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View Vl contains the average duration of the sections read in the days before each access to the world section, and view V2 the average duration of the sections read in the days after. We join Vl and V2 in order to get the result in single tuples. The actual SQL formulation is omitted due to lack of space and appears in [Cha97]. Once again, FYI-LOG can be partitioned on id attribute and a simpler query can be posed separately on each partition. We shall discuss Query Q4 in Section 2.4.

2 Theoretical Framework
In this section, we introduce our terminology and define what we mean by a group query. We give a syntactic criterion for identifying group queries and prove that this condition is sufficient. We also show that every group query can be expressed in a form that satisfies our criterion.

2.1 Assumptions and Terminology
We assume that queries are written in terms of views, with no subqueries. This is a valid assumption since there are many ways to rewrite a subquery as a join of two (or more) views [Kim82, Day87, SPLSG]. We initially assume that the database contains a single relation R. (Multiple relations will be considered in Section 2.4.) R may itself be a view or the result of another query, but from our point of view it is treated as an encapsulated table. (I.e., if R was a view, then we don’t consider unfolding the definition of R into queries over R.)

We shall define below the notion of a query graph. A query graph has nodes that are relational operations. We consider three kinds of relational operations:
Basic Blocks A basic block is some combination of projections and selections applied to a join of relations. In SQL such operations are expressed as SELECT-FROM-WHERE queries without aggregates or attribute renaming. A base relation is also treated as a basic block.
Aggregation Blocks An aggregation block is a sin- gle aggregation operation specifying a set of grouping attributes and a list of aggregate functions to be com- puted over the groups. The aggregation can optionally be followed by a selection. In SQL, such operations are expressed as SELECT-FROM-GROUPBY-HAVING queries where the SELECT clause includes all grouping attributes (plus some aggregates), and the FROM clause contains a single relation.

Set Blocks Set blocks express the set-oriented opera- tions, namely union, intersection and difference of relations with the same schema. The corresponding SQL constructs are UNION, INTERSECT and EXCEPT.
Any relational query can be specified using these three operations. A query can be split into two blocks if neces- sary, for example if the query has both a WBERE clause and a GROUPBY clause then we can rewrite it as an aggregation block applied to a basic block. Note that we do not allow constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed to handle the renaming operator.)

Definition 2.1: (Query Graph) Suppose that we are given a query Q. The nodes of the query graph for Q are the relational operations (as defined above) used in Q and its subviews. Basic blocks are written as rectangles, aggregation blocks as circles, and set blocks as diamonds. Every block is given a label corresponding to the view (or relation) name of that block. There is an edge from node labeled Ni to node labeled Ns if Ns is mentioned in the FROM clause of Ni , or if Ns is an argument of a set operation in Ni. An edge whose source is an aggregation block N is labeled with the grouping attributes of N. Edges coming out of a single basic block N are linked together with an arc, and jointly labeled by the join condition of N. Edges coming out of set blocks are not labeled. 0

A query graph is a directed acyclic graph with a single source (root) node representing the query result. We shall conventionally draw the graph with edges “pointing up.” For single-relation databases, there will always be a single sink node at the top of the picture. Figure 1 shows the query graphs for queries Ql, and Q2. Notice the separation of V2 and V3 from query Ql into basic blocks (V2B, V3B) and aggregation blocks (V2A, V3A).

E), , O2 : join conditions. 0 : join condition.

(4 query Ql (b) query Q2
Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes from the underlying relation R, and let D represent the domain over which the tuples of S values range. For every node N in the query graph and for x E D we write N(x) to represent the answer at node N when the extension of R is replaced by crs== (R). 0

Observe that the attributes in S do not have to be at- tributes of the answer at node N for N(x) to be well- defined. Also, observe that R = UzED R(z).

478

applied separately to partitions of FYIJJG based in id,

and the partial results could be unioned together.
Query Q3 is expressed in standard SQL as follows. View

Vl contains the average duration of the sections read in the

days before each access to the world section, and view V2

the average duration of the sections read in the days after.

We join Vl and V2 in order to get the result in single

tuples. The actual SQL formulation is omitted due to lack

of space and appears in [Cha97]. Once again, FYI-LOG

can be partitioned on id attribute and a simpler query can

be posed separately on each partition. We shall discuss

Query Q4 in Section 2.4.
2 Theoretical Framework In this section, we introduce our terminology and define

what we mean by a group query. We give a syntactic

criterion for identifying group queries and prove that this

condition is sufficient. We also show that every group query

can be expressed in a form that satisfies our criterion. 2.1 Assumptions and Terminology We assume that queries are written in terms of views, with

no subqueries. This is a valid assumption since there are

many ways to rewrite a subquery as a join of two (or more)

views [Kim82, Day87, SPLSG]. We initially assume that the

database contains a single relation R. (Multiple relations

will be considered in Section 2.4.) R may itself be a view

or the result of another query, but from our point of view it

is treated as an encapsulated table. (I.e., if R was a view,

then we don’t consider unfolding the definition of R into

queries over R.) We shall define below the notion of a query graph. A

query graph has nodes that are relational operations. We

consider three kinds of relational operations:
Basic Blocks A basic block is some combination of

projections and selections applied to a join of relations. In

SQL such operations are expressed as SELECT-FROM-WHERE

queries without aggregates or attribute renaming. A base

relation is also treated as a basic block.
Aggregation Blocks An aggregation block is a sin-

gle aggregation operation specifying a set of grouping

attributes and a list of aggregate functions to be com-

puted over the groups. The aggregation can optionally

be followed by a selection. In SQL, such operations are

expressed as SELECT-FROM-GROUPBY-HAVING queries where

the SELECT clause includes all grouping attributes (plus

some aggregates), and the FROM clause contains a single

relation.
Set Blocks Set blocks express the set-oriented opera-

tions, namely union, intersection and difference of relations

with the same schema. The corresponding SQL constructs

are UNION, INTERSECT and EXCEPT.
Any relational query can be specified using these three

operations. A query can be split into two blocks if neces-

sary, for example if the query has both a WBERE clause and

a GROUPBY clause then we can rewrite it as an aggregation

block applied to a basic block. Note that we do not allow

constant relations in queries, nor do we allow attribute

renaming. (In [Cha97] we describe the extensions needed

to handle the renaming operator.)
Definition 2.1: (Query Graph) Suppose that we are

given a query Q. The nodes of the query graph for Q

are the relational operations (as defined above) used in Q

and its subviews. Basic blocks are written as rectangles,

aggregation blocks as circles, and set blocks as diamonds.

Every block is given a label corresponding to the view (or

relation) name of that block. There is an edge from node

labeled Ni to node labeled Ns if Ns is mentioned in the

FROM clause of Ni , or if Ns is an argument of a set operation

in Ni. An edge whose source is an aggregation block N is

labeled with the grouping attributes of N. Edges coming

out of a single basic block N are linked together with an

arc, and jointly labeled by the join condition of N. Edges

coming out of set blocks are not labeled. 0 A query graph is a directed acyclic graph with a single

source (root) node representing the query result. We shall

conventionally draw the graph with edges “pointing up.”

For single-relation databases, there will always be a single

sink node at the top of the picture. Figure 1 shows the

query graphs for queries Ql, and Q2. Notice the separation

of V2 and V3 from query Ql into basic blocks (V2B, V3B)

and aggregation blocks (V2A, V3A).

E), , O2 : join conditions.
0 : join condition. (4 query Ql (b) query Q2 Figure 1: Query graphs

Definition 2.2: (Partitioning) Let S be a set of attributes

from the underlying relation R, and let D represent the

domain over which the tuples of S values range. For every

node N in the query graph and for x E D we write N(x)

to represent the answer at node N when the extension of

R is replaced by crs== (R). 0
Observe that the attributes in S do not have to be at-

tributes of the answer at node N for N(x) to be well-

defined. Also, observe that R = UzED R(z).
478

SQL surface syntax, relational algebra,
query graphs + annotations, iteration

Torsten Grust U Tübingen

A Uniform
Query Representation

28

➊ unfold Q’

Torsten Grust U Tübingen

A Uniform
Query Representation

28

[g(y) | y ← P]agg Q’ g agg P =

[f(x) | x ← xs]M map f xs =

[⟨f(x), [y | y ← xs, f(x) = f(y)]M⟩ | x ← xs]set partition f xs =

➊ unfold Q’

Torsten Grust U Tübingen

A Uniform
Query Representation

28

[g(y) | y ← P]agg Q’ g agg P =

[f(x) | x ← xs]M map f xs =

[⟨f(x), [y | y ← xs, f(x) = f(y)]M⟩ | x ← xs]set partition f xs =

map (λ⟨x,P⟩.⟨x, Q’ g agg P⟩ (partition f xs)

➊ unfold Q’

Torsten Grust U Tübingen

A Uniform
Query Representation

28

[g(y) | y ← P]agg Q’ g agg P =

[f(x) | x ← xs]M map f xs =

[⟨f(x), [y | y ← xs, f(x) = f(y)]M⟩ | x ← xs]set partition f xs =

map (λ⟨x,P⟩.⟨x, Q’ g agg P⟩ (partition f xs)

[⟨f(x), [g(y) | y ← R, f(y) = f(x)]agg⟩ | x ← R]set

Torsten Grust U Tübingen

A Uniform
Query Representation

28

[g(y) | y ← P]agg Q’ g agg P =

[f(x) | x ← xs]M map f xs =

[⟨f(x), [y | y ← xs, f(x) = f(y)]M⟩ | x ← xs]set partition f xs =

map (λ⟨x,P⟩.⟨x, Q’ g agg P⟩ (partition f xs)

SELECT f(x), agg(g(x))
FROM R AS x
GROUP BY f(x)

Torsten Grust U Tübingen29

XPath

Torsten Grust U Tübingen

XPath Comprehensions

30

Torsten Grust U Tübingen

XPath Comprehensions

30

/descendant::a[following::b]/child::c

Torsten Grust U Tübingen

XPath Comprehensions

30

/descendant::a[following::b]/child::c

1. Normalize, simplify, flip XPath step expressions

Torsten Grust U Tübingen

XPath Comprehensions

30

/descendant::a[following::b]/child::c

1. Normalize, simplify, flip XPath step expressions

2. Compile XPath into queries over tabular XML encoding

Torsten Grust U Tübingen

XPath Comprehensions

30

xpath p (root c)xpath (/p) c =

[n’ | n ← xpath p1 c, n’ ← xpath p2 n]X xpath (p1/p2) c =

[n | n ← xpath p c, [true | _ ← xpath q n]some]X xpath (p[q]) c =

step (ax::t) c xpath (ax::t) c =

/descendant::a[following::b]/child::c

1. Normalize, simplify, flip XPath step expressions

2. Compile XPath into queries over tabular XML encoding

Torsten Grust U Tübingen

A Tabular XML Encoding

31

<a>
 <c><d/>e</c>
 <f><!--g-->
 <h><i/><j/></h>
 </f>

Torsten Grust U Tübingen

A Tabular XML Encoding

31

a
b
c

d e
g

i j

f
h

Torsten Grust U Tübingen

A Tabular XML Encoding

31

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

Torsten Grust U Tübingen

A Tabular XML Encoding

31

5

5

post

pre

a

b c

d
e

f

g

h

i
j

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

Torsten Grust U Tübingen

A Tabular XML Encoding

31

5

5

post

pre

a

b c

d
e

f

g

h

i
j

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

Torsten Grust U Tübingen

A Tabular XML Encoding

31

5

5

post

pre

a

b c

d
e

f

g

h

i
j

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

[n | n ← doc, pre c < pre n, post c > post n, tag n = t]X
step (descendant::t) c =

Torsten Grust U Tübingen

A Tabular XML Encoding

31

5

5

post

pre

a

b c

d
e

f

g

h

i
j

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

[n | n ← doc, pre c < pre n, post c > post n, tag n = t]X
step (descendant::t) c =

Torsten Grust U Tübingen

A Tabular XML Encoding

31

5

5

post

pre

a

b c

d
e

f

g

h

i
j

a
b
c

d e
g

i j

f
h

1b3
0a9

4e1

2c2

3d0

5f8

6g4
8i5 9j6

7h7

[n | n ← doc, pre c < pre n, post c > post n, tag n = t]X
step (descendant::t) c =

[n | n ← doc, pre c > pre n, post c < post n, tag n = t]X
step (ancestor::t) c =

Torsten Grust U Tübingen

XPath: Looking Forward

32

XPath: Looking Forward
D. Olteanu et al., XMLDM (EDBT 2002), March 2002

Torsten Grust U Tübingen

XPath: Looking Forward

32

XPath: Looking Forward
D. Olteanu et al., XMLDM (EDBT 2002), March 2002

a
b
c

d e
g

i j

f
h

Torsten Grust U Tübingen

XPath: Looking Forward

32

XPath: Looking Forward
D. Olteanu et al., XMLDM (EDBT 2002), March 2002

/descendant::g/preceding::c

a
b
c

d e
g

i j

f
h

Torsten Grust U Tübingen

XPath: Looking Forward

32

XPath: Looking Forward
D. Olteanu et al., XMLDM (EDBT 2002), March 2002

/descendant::g/preceding::c

a
b
c

d e
g

i j

f
h←

Torsten Grust U Tübingen

XPath: Looking Forward

32

XPath: Looking Forward
D. Olteanu et al., XMLDM (EDBT 2002), March 2002

/descendant::g/preceding::c

a
b
c

d e
g

i j

f
h

/descendant::c[following::g]
≡←

Torsten Grust U Tübingen

XPath: Looking Forward

33

Torsten Grust U Tübingen

XPath: Looking Forward

33

Torsten Grust U Tübingen

Comprehending XPath

34

➊ xpath

Torsten Grust U Tübingen

Comprehending XPath

34

/descendant::g/preceding::c

➊ xpath

Torsten Grust U Tübingen

Comprehending XPath

34

/descendant::g/preceding::c

[v’ | v ← doc, tag v = ’g’, v’ ← doc,
 pre v’ < pre v, post v’ < post v, tag v’ = ’c’]X

Torsten Grust U Tübingen

Comprehending XPath

34

/descendant::g/preceding::c

/descendant::c[following::g]

[v’ | v ← doc, tag v = ’g’, v’ ← doc,
 pre v’ < pre v, post v’ < post v, tag v’ = ’c’]X

Torsten Grust U Tübingen

Comprehending XPath

34

/descendant::g/preceding::c

SELECT DISTINCT v’
FROM doc v, doc v’
WHERE tag v = ’g’ AND tag v’ = ’c’
AND pre v’ < pre v AND post v’ < post v
ORDER BY pre v’

[v’ | v ← doc, tag v = ’g’, v’ ← doc,
 pre v’ < pre v, post v’ < post v, tag v’ = ’c’]X

Torsten Grust U Tübingen35

BRING BACK
MONAD

COMPREHENSIONS

Torsten Grust U Tübingen

Comprehensions in Haskell

36

Haskell

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

Haskell

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Haskell

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Haskell

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell
27

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell 1.4

Haskell
27

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell 1.4

Haskell 98

Haskell
27

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell 1.4

Haskell 98

GHC
27

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell 1.4

Haskell 98

Comprehensive 
Comprehensions

GHC
27

Torsten Grust U Tübingen

Comprehensions in Haskell

36

!

1990 1997 2003 2007 2011

Comprehending Monads

Haskell 1.4

Haskell 98

Comprehensive 
Comprehensions

Bringing Back 
Monad Comprehensions

GHC
27

Torsten Grust U Tübingen36

!

Movie Plot Line

5 min 120 min

Meeting

Inciting Incident
Turning Point

Climax

Pinch

Torsten Grust U Tübingen

Comprehensi{ve, ons}

37

Comprehensive Comprehensions
P. Wadler, S. Peyton-Jones, Haskell Workshop, October 2007

Torsten Grust U Tübingen

Comprehensi{ve, ons}

37

Comprehensive Comprehensions
P. Wadler, S. Peyton-Jones, Haskell Workshop, October 2007

[(the dept, maximum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, length dept > 10
, then sortWith by Down (sum salary)
, then take 5
]

Torsten Grust U Tübingen

Comprehensi{ve, ons}

37

Comprehensive Comprehensions
P. Wadler, S. Peyton-Jones, Haskell Workshop, October 2007

[(the dept, maximum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, length dept > 10
, then sortWith by Down (sum salary)
, then take 5
]

LIMIT
ORDER BY

ASC/DESC

AGGR
FROM

HAVING

GROUP BY

Torsten Grust U Tübingen

Comprehensi{ve, ons}

37

Comprehensive Comprehensions
P. Wadler, S. Peyton-Jones, Haskell Workshop, October 2007

[sum salary
| (name, “MS”, salary) <- employees
, then group using runs 3
, then take 5
]

OVER

row patterns!

Not shown: set operations, joins, WITH…RECURSIVE, …

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATADATA

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA

DATA

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA Haskell d

DATA

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

Haskell

DATA

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA

SQL

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA

SQL

SQL

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA
SQL

SQL
dd

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA
SQL

SQL

d

d

Torsten Grust U Tübingen

Database–Supported Haskell

38

Haskell Heap

DBMS

DATA
SQL

SQL

d

d

haskell

Torsten Grust U Tübingen39

Database–Supported Haskell

Torsten Grust U Tübingen39

Database–Supported Haskell
-— rolling minimum (mins [3,4,1,7] = [3,3,1,1])
mins :: Ord a => [a] -> [a]
mins xs =
 [minimum [y | (y,j) <- #xs, j <= i] | (_,i) <- #xs]

-— margin: current value - minimum value up to now
margins :: (Ord a, Num a) => [a] -> [a]
margins xs = [x - y | (x,y) <- zip xs (mins xs)]

-— our profit is the maximum margin obtainable
profit :: (Ord a, Num a) => [a] -> [a]
profit xs = maximum (margins xs)

-— best profit obtainable for stock on given date
bestProfit :: Text -> Date -> [Trade] -> Double
bestProfit stock date trades =
 profit [price t | t <- sortWith ts trades,
 id t == stock, day t == date]

Q

Q Q

Q

Q Q

Q

Q

Torsten Grust U Tübingen39

Database–Supported Haskell
-— rolling minimum (mins [3,4,1,7] = [3,3,1,1])
mins :: Ord a => [a] -> [a]
mins xs =
 [minimum [y | (y,j) <- #xs, j <= i] | (_,i) <- #xs]

-— margin: current value - minimum value up to now
margins :: (Ord a, Num a) => [a] -> [a]
margins xs = [x - y | (x,y) <- zip xs (mins xs)]

-— our profit is the maximum margin obtainable
profit :: (Ord a, Num a) => [a] -> [a]
profit xs = maximum (margins xs)

-— best profit obtainable for stock on given date
bestProfit :: Text -> Date -> [Trade] -> Double
bestProfit stock date trades =
 profit [price t | t <- sortWith ts trades,
 id t == stock, day t == date]

id ts day price
ACME 1 7/1/15 3.0
ACME 2 7/1/15 4.0
ACME 3 7/1/15 1.0
ACME 4 7/1/15 7.0
⠇ ⠇ ⠇ ⠇

Trades

Q

Q Q

Q

Q Q

Q

Q

Torsten Grust U Tübingen39

Database–Supported Haskell
-— rolling minimum (mins [3,4,1,7] = [3,3,1,1])
mins :: Ord a => [a] -> [a]
mins xs =
 [minimum [y | (y,j) <- #xs, j <= i] | (_,i) <- #xs]

-— margin: current value - minimum value up to now
margins :: (Ord a, Num a) => [a] -> [a]
margins xs = [x - y | (x,y) <- zip xs (mins xs)]

-— our profit is the maximum margin obtainable
profit :: (Ord a, Num a) => [a] -> [a]
profit xs = maximum (margins xs)

-— best profit obtainable for stock on given date
bestProfit :: Text -> Date -> [Trade] -> Double
bestProfit stock date trades =
 profit [price t | t <- sortWith ts trades,
 id t == stock, day t == date]

Q

Q Q

Q

Q Q

Q

Q

Torsten Grust U Tübingen39

Database–Supported Haskell
-— rolling minimum (mins [3,4,1,7] = [3,3,1,1])
mins :: Ord a => [a] -> [a]
mins xs =
 [minimum [y | (y,j) <- #xs, j <= i] | (_,i) <- #xs]

-— margin: current value - minimum value up to now
margins :: (Ord a, Num a) => [a] -> [a]
margins xs = [x - y | (x,y) <- zip xs (mins xs)]

-— our profit is the maximum margin obtainable
profit :: (Ord a, Num a) => [a] -> [a]
profit xs = maximum (margins xs)

-— best profit obtainable for stock on given date
bestProfit :: Text -> Date -> [Trade] -> Double
bestProfit stock date trades =
 profit [price t | t <- sortWith ts trades,
 id t == stock, day t == date]

Q

Q Q

Q

Q Q

Q

Q

Torsten Grust U Tübingen39

Database–Supported Haskell

—- SQL code generated from Haskell source
SELECT MAX(margins.price - margins.min)
FROM
 (SELECT t.price,
 MIN(t.price)
 OVER (ORDER BY t.ts ROW BETWEEN
 UNBOUNDED PRECEDING
 AND CURRENT ROW)
 FROM trades AS t
 WHERE t.id = ‘ACME’
 AND t.day = ’07/01/2015’
) AS margins(price,min)

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

[[f y | y ← g x] | x ← xs]

f :: a → b

f

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

[[f y | y ← g x] | x ← xs]

f :: a → b

f

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

[[f y | y ← g x] | x ← xs]

f :: a → b
f 1 :: [a] → [b]

f 1

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

[[f y | y ← g x] | x ← xs]

f :: a → b
f 1 :: [a] → [b]
f 2 :: [[a]] → [[b]]

f 2

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

f :: a → b
f 1 :: [a] → [b]
f 2 :: [[a]] → [[b]]

f 2 [g x | x ← xs]

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

f :: a → b
f 1 :: [a] → [b]
f 2 :: [[a]] → [[b]]

f 2 (g1 xs)

Torsten Grust U Tübingen

Comprehensions
Yield Independent Work  

40

[f n e | x ← xs] ⇝ f n+1 [e | x ← xs]

Torsten Grust U Tübingen40

[f n e | x ← xs] ⇝ f n+1 [e | x ← xs]

Nested Data Parallelism

Implementation of a Portable Nested Data-Parallel Language
G. E. Blelloch et al., ACM PPoPP, May 1993

Torsten Grust U Tübingen

The Flatter, the Better

41

Torsten Grust U Tübingen

The Flatter, the Better

41

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 0 , 30 , 11,10, 7] 
 +  
[0, 4 , 12 , 13, 2, 3]

 [] [] []  
  
 [] [] []

2

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 0 , 30 , 11,10, 7] 
 +  
[0, 4 , 12 , 13, 2, 3]

[] [] []

[] [] []

2

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 0 , 30 , 11,10, 7] 
 +  
[0, 4 , 12 , 13, 2, 3]

1

fo
rg
et

[] [] []

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10]

fo
rg
et

[] [] []

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10]

fo
rg
et

im
pr
in
t[] [] []

xss +2 yss

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10]

fo
rg
et

im
pr
in
t[] [] []

f n e ⇝ imprintn-1 (f 1 (forgetn-1 e))

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10] [] [] []

f n e ⇝ imprintn-1 (f 1 (forgetn-1 e))

pos sum
1 19
2 4
3 42
4 24
5 12
6 10

seg pos

1 1

1 2

1 3

seg
1
1
2
3
3
3

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10] [] [] []

f n e ⇝ imprintn-1 (f 1 (forgetn-1 e))

pos sum
1 19
2 4
3 42
4 24
5 12
6 10

seg pos

1 1

1 2

1 3

seg
1
1
2
3
3
3

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10] [] [] []

f n e ⇝ imprintn-1 (f 1 (forgetn-1 e))

pos sum
1 19
2 4
3 42
4 24
5 12
6 10

seg pos

1 1

1 2

1 3

seg
1
1
2
3
3
3

Torsten Grust U Tübingen

The Flatter, the Better

41

[19, 4 , 42 , 24,12,10] [] [] []

f n e ⇝ imprintn-1 (f 1 (forgetn-1 e))

pos sum
1 19
2 4
3 42
4 24
5 12
6 10

seg pos

1 1

1 2

1 3

seg
1
1
2
3
3
3

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

+1

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1 πsum: x+y()

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

⋉p
1

πsum: x+y()

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg1 ⋯ x
1 19
1 0
2 30
3 11
3 0
3 7

seg2 ⋯ y
1 0
1 4
2 12
3 13
3 2
3 3

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

⋉p
1

πsum: x+y()

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg1 ⋯ x
1 19
1 0
2 30
3 11
3 0
3 7

seg2 ⋯ y
1 0
1 4
2 12
3 13
3 2
3 3

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

⋉p
1

πsum: x+y()

⋉p

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg1 ⋯ x
1 19
1 0
2 30
3 11
3 0
3 7

seg2 ⋯ y
1 0
1 4
2 12
3 13
3 2
3 3

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

⋉p
1

πsum: x+y()

⋉p ∧ seg1 = seg2

Torsten Grust U Tübingen

Database Systems:  
Designed to Implement _1

42

seg1 ⋯ x
1 19
1 0
2 30
3 11
3 0
3 7

seg2 ⋯ y
1 0
1 4
2 12
3 13
3 2
3 3

seg ⋯ x y
1 19 0
1 0 4
2 30 12
3 11 13
3 0 2
3 7 3

+1

⋉p
1

πsum: x+y()

⋉p ∧ seg1 = seg2

Torsten Grust U Tübingen

Plan Bundles
Instead of Query Avalanches

43

[(Int,[Str],[(Bool,[(Int,Int)])])]

Torsten Grust U Tübingen

Plan Bundles
Instead of Query Avalanches

43

[(Int,[Str],[(Bool,[(Int,Int)])])]

Torsten Grust U Tübingen

Plan Bundles
Instead of Query Avalanches

43

[[][[]]]

Torsten Grust U Tübingen

Plan Bundles
Instead of Query Avalanches

43

[[][[]]]

Query Plan Bundle

Torsten Grust U Tübingen

Plan Bundles
Instead of Query Avalanches

43

[[][[]]]

Query Plan Bundle

Torsten Grust U Tübingen44

