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DDO (Distinct Document Order)
• A prominent feature in XML processing using XQuery
✓ reflecting the models of ordered trees
✓ the document order: a total order defined over all nodes in 

the tree, determined by a preorder traversal

• It is potentially costly

• There are studies on avoiding the need for DDO operations.
[SIGMOD02a], [SIGMOD02b], [SIGMOD03], [DBPL03], [DEXA05], [MSCS15], …

e/α::τ = distinct-doc-order(for $fs:dot in e return α::τ)

e/α1::τ1/…/αK::τK 
= ddo(for $fs:dot in ddo(…) return αK::τK)

“heavily-ordered”



DDO-free XQuery
e/α::τ = for $fs:dot in e return α::τ

Syntactic restriction is needed.
A single-node child-traversal expression $v/child::τ is DDO-free

navigating to child nodes from a single node does not require DDO
when XML documents are stored in a serialized (preorder-based) fashion.
Many XQuery engines such as BaseX, MonetDB/XQuery, DB2/pureXML adopt this. 

Most theoretical work on XQuery [TODS06], [ICFP15], [ESOP15]
are based on this syntactic restriction.

for $v in doc(“foo.xml”)/r/a
return ($v/b, $v/c)



Twig Query with DDO
Twig queries: one of the typical use cases of XQuery

Extracting subtrees that satisfy tree patterns 

Twig queries with DDO are the norm and not the exception.

[[e]]=(                             )
[[ddo(e)]] = (              ) 

[An example]  Analyzing a log file in XML format using a twig query
Extracting nodes that satisfying a tree pattern and are sorted in DDO

e may not be DDO-free

[A running example]
ddo( for $b in doc(“foo.xml’’)/a/b return

     for $a in $b/.. return ($b, $a)/c )



The Problem 

Naive evaluation of ddo(e) requires 
multiple application of ddo
=> may lead to significant sorting 
overhead

)
[A running example]
ddo( for $b in doc(“foo.xml’’)/a/b return

     for $a in $b/.. return ($b, $a)/c )

DDO-free e’



What we have done

[Input]  
• a schema information (nested-relational DTD) and
• a twig query e

[Output]
    a transformed XQuery e’ such that e’=ddo(e) and e’ is DDO-free. 

An XQuery transformation to evaluate twig 
queries with DDO efficiently.

The input XQuery form does not include element constructors 
because we focus on twig queries, which extract subtrees that 
satisfy given tree patterns described in XQuery



Basic Idea

Prepare a DDO-free skeleton query s, which has the 
ability to generate all  nodes in DDO for any XML 
document that conforms to the schema.

Generate-and-Test approach

(G):  

(T):  Formulate a s[cond] by injecting node test conditions 
cond extracted from the input query e.

(1) How to prepare the skeleton query s.

(2) How to extract appropriate conditions from the input query.

(3) How to inject those conditions into the skeleton query.

s[cond] is DDO-free



Our Solution
(1) How to prepare a DDO-free skeleton query s.
✓ can be derived for a given nested-relational DTD.

s[cond] is DDO-free and equivalent to the input query e up to DDO

cond is extracted from e’, which is equivalent to e up to DDO

(2) How to extract appropriate conditions from the input query
✓ the input query e can be transformed into e’ which has a structure 

similar to that of the skeleton query s to reveal the conditions.  
✓ this transformation preserves equivalence up to DDO, 

ddo(e)=ddo(e’)
(3) How to inject those conditions into the skeleton query
✓ Since e’ has a structure similar to that of s, s[cond] can be 

obtained in a systematic way.



Nested-relational DTD

Σ1={a,b,c,d}
μ1(a)=(b*, c+)
μ1(c)=d?
μ1(b)=μ1(d)=()
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D; cxt ` () ! ()

D; cxt ` r1 ! e1 · · · D; cxt ` rN ! eN
D; cxt ` (r1, . . . , rN ) ! (e1, . . . , eN )

((r = l ) _ (r = l ⇤) _ (r = l+) _ (r = l ?))
a fresh variable $u 2 Var D; $u ` D.µ(l) ! e

D; $� ` r ! for $u in $�/�ild ::l return (if () then $u else (), e)

Figure 1: Skeleton query derivation for NRDTD D.

2.1 XQuery
2.1.1 The data model of XQuery. XQuery’s data model is

based on sequences, namely, ordered collections of zero or more
items. One important characteristic of the data model is that all se-
quences are flat: a sequence never contains other sequences; nested
sequence expressions are implicitly flattened by the XQuery pro-
cessor. In addition, there is no distinction between an item x and
the singleton sequence (x) containing that item. Sequences are
assigned an effective Boolean value: an empty sequence, denoted by
(), represents false while any non-empty sequence represents true.

2.1.2 Input XQuery expressions. The subset of XQuery ex-
pressions that comprise our input dialect is represented in Figure 3a.
Note that the input XQuery form does not include element construc-
tors because we focus on twig queries, which extract subtrees that
satisfy given tree patterns. The absence of element constructors
renders the target dialect purely functional (constructors in XQuery
induce side effects) so that let-expressions can be eliminated by
replacing bound variables with their defining expressions [15]. Note
also that we use a special variable $R instead of the doc function
to denote the document node of an input XML document. We use
dos and aos to abbreviate the descendant-or-self and ancestor-or-
self axes, respectively. In addition, we use Var and Label to denote
an infinite set of variables and an infinite set of element tag names
(short: labels), respectively.

2.2 The skeleton query
2.2.1 Derivation of skeleton queries. We design skeleton

queries based on the following principles, which later enable us to
inject test conditions that we extract from the input query:

• A skeleton query is a DDO-free expression,
• the query encodes the schema that the input documents adhere

to, and
• stub if-conditionals (to be replaced later) are placed in appropri-

ate positions.

Our skeleton queries are formulated based on nested-relational
DTDs, which are very common in practice [1]. Nested-relational
DTDs are a proper subclass of non-recursive, disjunction-free DTDs.

Definition 4 (Document Type Definition (DTD)). A DTD over a
finite alphabet � is a triple D = (�, l0, µ), where l0 is the root label
and µ is a function from � to the set of regular expressions over �.
µ(l) = () (the empty sequence) if label l denotes an element leaf

s ::= for $� in $�/�ild ::� return sr | ()
sr ::= ((if () then $� else ()), s, ..., s)

Figure 2: The syntax of a skeleton query

node. A regular expression r over � is defined as follows:

r ::= l (⇤ label, l 2 � ⇤)
| (r , r , . . . , r ) (⇤ sequence ⇤)
| r

⇤ (⇤ zero or more occurrences ⇤)
| r

+ (⇤ one or more occurrences ⇤)
| r? (⇤ zero or one occurrence ⇤)
| r | r | · · · | r (⇤ disjunction ⇤)

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(�, l0, µ) is an NRDTD if D is non-recursive, and µ(l) is a sequence
(r1, . . . , rN ) such that each ri has the form li , l⇤i , l+i , or li ?, and all
li s are distinct labels.

The algorithm for deriving a skeleton query from an NRDTD is
defined in terms of a set of inference rules, as shown in Figure 1. In
these rules, a judgment of the form

D; cxt ` r ! e

indicates that, given an NRDTD D and a variable cxt of XQuery rep-
resenting the context position in all the XML documents conforming
to D, the regular expression r is transformed into skeleton XQuery e.
For a given NRDTD D and a variable $R representing the root nodes
of all the XML documents conforming to D, the skeleton XQuery e

is obtained by means of the following judgment:

D; $R ` D.l0 ! e .

The resulting skeleton query e has the syntactic form shown in
Figure 2. The query is DDO-free since every step expression it
contains is a single-node child-traversal expression.

Example 1. Consider an NRDTD D1 = (�1, a, µ1), where �1 =
{a, b, c, d} and µ1(a) = (b⇤, c+), µ1(c) = d?, and µ1(b) = µ1(d) = ().
Then, the skeleton query for D1 is as follows (for readability, we omit
concatenations with the empty sequence and follow the convention
to abbreviate $�/�ild ::� as $�/� ):

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

Note how the stub conditionals if () then . . . are placed to control
whether an element is produced or not—these will be replaced in
the sequel.

2.2.2 Structural features of skeleton queries. The skeleton
query serves as a query template whose stub conditions will be
instantiated in the second phase. The two following definitions help
to make properties of this template precise:

Definition 6 (Output variable). A variable is said to be an output
variable when that variable is bound to nodes that may be output.

3

The height of trees are fixed

Node order can be distinguished by 
using the single-node child-traversal 
expression

an example: D1=(Σ1, a, μ1)

a
b b c c

d

$R document node for $a in $R/a
return ($a/b, $a/c)

μ1’(a)=(b*, c+, b)b



• A skeleton query is a DDO-free expression (use single-node child traversal) ,
• the query encodes the schema that the input document adhere, and
• stub if-conditionals are placed in appropriate positions to control whether an 

element is produced or not.

The design policy

Σ1={a,b,c,d}
μ1(a)=(b*, c+)
μ1(c)=d?
μ1(b)=μ1(d)=()

D1=(Σ1, a, μ1)

a
b b c c

d

$R
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D; cxt ` () ! ()

D; cxt ` r1 ! e1 · · · D; cxt ` rN ! eN
D; cxt ` (r1, . . . , rN ) ! (e1, . . . , eN )

((r = l ) _ (r = l ⇤) _ (r = l+) _ (r = l ?))
a fresh variable $u 2 Var D; $u ` D.µ(l) ! e

D; $� ` r ! for $u in $�/�ild ::l return (if () then $u else (), e)

Figure 1: Skeleton query derivation for NRDTD D.

2.1 XQuery
2.1.1 The data model of XQuery. XQuery’s data model is

based on sequences, namely, ordered collections of zero or more
items. One important characteristic of the data model is that all se-
quences are flat: a sequence never contains other sequences; nested
sequence expressions are implicitly flattened by the XQuery pro-
cessor. In addition, there is no distinction between an item x and
the singleton sequence (x) containing that item. Sequences are
assigned an effective Boolean value: an empty sequence, denoted by
(), represents false while any non-empty sequence represents true.

2.1.2 Input XQuery expressions. The subset of XQuery ex-
pressions that comprise our input dialect is represented in Figure 3a.
Note that the input XQuery form does not include element construc-
tors because we focus on twig queries, which extract subtrees that
satisfy given tree patterns. The absence of element constructors
renders the target dialect purely functional (constructors in XQuery
induce side effects) so that let-expressions can be eliminated by
replacing bound variables with their defining expressions [15]. Note
also that we use a special variable $R instead of the doc function
to denote the document node of an input XML document. We use
dos and aos to abbreviate the descendant-or-self and ancestor-or-
self axes, respectively. In addition, we use Var and Label to denote
an infinite set of variables and an infinite set of element tag names
(short: labels), respectively.

2.2 The skeleton query
2.2.1 Derivation of skeleton queries. We design skeleton

queries based on the following principles, which later enable us to
inject test conditions that we extract from the input query:

• A skeleton query is a DDO-free expression,
• the query encodes the schema that the input documents adhere

to, and
• stub if-conditionals (to be replaced later) are placed in appropri-

ate positions.

Our skeleton queries are formulated based on nested-relational
DTDs, which are very common in practice [1]. Nested-relational
DTDs are a proper subclass of non-recursive, disjunction-free DTDs.

Definition 4 (Document Type Definition (DTD)). A DTD over a
finite alphabet � is a triple D = (�, l0, µ), where l0 is the root label
and µ is a function from � to the set of regular expressions over �.
µ(l) = () (the empty sequence) if label l denotes an element leaf

s ::= for $� in $�/�ild ::� return sr | ()
sr ::= ((if () then $� else ()), s, ..., s)

Figure 2: The syntax of a skeleton query

node. A regular expression r over � is defined as follows:

r ::= l (⇤ label, l 2 � ⇤)
| (r , r , . . . , r ) (⇤ sequence ⇤)
| r

⇤ (⇤ zero or more occurrences ⇤)
| r

+ (⇤ one or more occurrences ⇤)
| r? (⇤ zero or one occurrence ⇤)
| r | r | · · · | r (⇤ disjunction ⇤)

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(�, l0, µ) is an NRDTD if D is non-recursive, and µ(l) is a sequence
(r1, . . . , rN ) such that each ri has the form li , l⇤i , l+i , or li ?, and all
li s are distinct labels.

The algorithm for deriving a skeleton query from an NRDTD is
defined in terms of a set of inference rules, as shown in Figure 1. In
these rules, a judgment of the form

D; cxt ` r ! e

indicates that, given an NRDTD D and a variable cxt of XQuery rep-
resenting the context position in all the XML documents conforming
to D, the regular expression r is transformed into skeleton XQuery e.
For a given NRDTD D and a variable $R representing the root nodes
of all the XML documents conforming to D, the skeleton XQuery e

is obtained by means of the following judgment:

D; $R ` D.l0 ! e .

The resulting skeleton query e has the syntactic form shown in
Figure 2. The query is DDO-free since every step expression it
contains is a single-node child-traversal expression.

Example 1. Consider an NRDTD D1 = (�1, a, µ1), where �1 =
{a, b, c, d} and µ1(a) = (b⇤, c+), µ1(c) = d?, and µ1(b) = µ1(d) = ().
Then, the skeleton query for D1 is as follows (for readability, we omit
concatenations with the empty sequence and follow the convention
to abbreviate $�/�ild ::� as $�/� ):

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

Note how the stub conditionals if () then . . . are placed to control
whether an element is produced or not—these will be replaced in
the sequel.

2.2.2 Structural features of skeleton queries. The skeleton
query serves as a query template whose stub conditions will be
instantiated in the second phase. The two following definitions help
to make properties of this template precise:

Definition 6 (Output variable). A variable is said to be an output
variable when that variable is bound to nodes that may be output.

3

The skeleton query returns all nodes in DDO 
if the conditions are replaced with true.

An empty sequence () represents false.
Any non-empty sequence represents true.

Skeleton Query Construction



Our Solution
(1) How to prepare a DDO-free skeleton query s.
✓ can be derived for a given nested-relational DTD.

s[cond] is DDO-free and equivalent to the input query e up to DDO

cond is extracted from e’, which is equivalent to e up to DDO

(2) How to extract appropriate conditions from the input query
✓ the input query e can be transformed into e’ which has a structure 
similar to that of the skeleton query s to reveal the conditions.  

✓ this transformation preserve equivalence up to DDO, 
ddo(e)=ddo(e’)

(3) How to inject those conditions into the skeleton query
✓ Since e’ has a structure similar to that of s, s[cond] can be 

obtained in a systematic way.



Structural Features of Skeleton Query
(s1) If a node is output it has been previously bound to an output variable, 
(s2) all occurrences of for are consecutive-child-axis for-expressions, and
(s3) a (stub) if-conditional is located in the return part of each for. 

An output variable is bound to nodes to be output.

A consecutive-child-axis for-expression is a nested for-expression 
in which the in  part is a step expression ($v/child::τ) and $v  is 
defined in the innermost outer for.

a
b b c c

d

$R
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D; cxt ` () ! ()

D; cxt ` r1 ! e1 · · · D; cxt ` rN ! eN
D; cxt ` (r1, . . . , rN ) ! (e1, . . . , eN )

((r = l ) _ (r = l ⇤) _ (r = l+) _ (r = l ?))
a fresh variable $u 2 Var D; $u ` D.µ(l) ! e

D; $� ` r ! for $u in $�/�ild ::l return (if () then $u else (), e)

Figure 1: Skeleton query derivation for NRDTD D.

2.1 XQuery
2.1.1 The data model of XQuery. XQuery’s data model is

based on sequences, namely, ordered collections of zero or more
items. One important characteristic of the data model is that all se-
quences are flat: a sequence never contains other sequences; nested
sequence expressions are implicitly flattened by the XQuery pro-
cessor. In addition, there is no distinction between an item x and
the singleton sequence (x) containing that item. Sequences are
assigned an effective Boolean value: an empty sequence, denoted by
(), represents false while any non-empty sequence represents true.

2.1.2 Input XQuery expressions. The subset of XQuery ex-
pressions that comprise our input dialect is represented in Figure 3a.
Note that the input XQuery form does not include element construc-
tors because we focus on twig queries, which extract subtrees that
satisfy given tree patterns. The absence of element constructors
renders the target dialect purely functional (constructors in XQuery
induce side effects) so that let-expressions can be eliminated by
replacing bound variables with their defining expressions [15]. Note
also that we use a special variable $R instead of the doc function
to denote the document node of an input XML document. We use
dos and aos to abbreviate the descendant-or-self and ancestor-or-
self axes, respectively. In addition, we use Var and Label to denote
an infinite set of variables and an infinite set of element tag names
(short: labels), respectively.

2.2 The skeleton query
2.2.1 Derivation of skeleton queries. We design skeleton

queries based on the following principles, which later enable us to
inject test conditions that we extract from the input query:

• A skeleton query is a DDO-free expression,
• the query encodes the schema that the input documents adhere

to, and
• stub if-conditionals (to be replaced later) are placed in appropri-

ate positions.

Our skeleton queries are formulated based on nested-relational
DTDs, which are very common in practice [1]. Nested-relational
DTDs are a proper subclass of non-recursive, disjunction-free DTDs.

Definition 4 (Document Type Definition (DTD)). A DTD over a
finite alphabet � is a triple D = (�, l0, µ), where l0 is the root label
and µ is a function from � to the set of regular expressions over �.
µ(l) = () (the empty sequence) if label l denotes an element leaf

s ::= for $� in $�/�ild ::� return sr | ()
sr ::= ((if () then $� else ()), s, ..., s)

Figure 2: The syntax of a skeleton query

node. A regular expression r over � is defined as follows:

r ::= l (⇤ label, l 2 � ⇤)
| (r , r , . . . , r ) (⇤ sequence ⇤)
| r

⇤ (⇤ zero or more occurrences ⇤)
| r

+ (⇤ one or more occurrences ⇤)
| r? (⇤ zero or one occurrence ⇤)
| r | r | · · · | r (⇤ disjunction ⇤)

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(�, l0, µ) is an NRDTD if D is non-recursive, and µ(l) is a sequence
(r1, . . . , rN ) such that each ri has the form li , l⇤i , l+i , or li ?, and all
li s are distinct labels.

The algorithm for deriving a skeleton query from an NRDTD is
defined in terms of a set of inference rules, as shown in Figure 1. In
these rules, a judgment of the form

D; cxt ` r ! e

indicates that, given an NRDTD D and a variable cxt of XQuery rep-
resenting the context position in all the XML documents conforming
to D, the regular expression r is transformed into skeleton XQuery e.
For a given NRDTD D and a variable $R representing the root nodes
of all the XML documents conforming to D, the skeleton XQuery e

is obtained by means of the following judgment:

D; $R ` D.l0 ! e .

The resulting skeleton query e has the syntactic form shown in
Figure 2. The query is DDO-free since every step expression it
contains is a single-node child-traversal expression.

Example 1. Consider an NRDTD D1 = (�1, a, µ1), where �1 =
{a, b, c, d} and µ1(a) = (b⇤, c+), µ1(c) = d?, and µ1(b) = µ1(d) = ().
Then, the skeleton query for D1 is as follows (for readability, we omit
concatenations with the empty sequence and follow the convention
to abbreviate $�/�ild ::� as $�/� ):

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

Note how the stub conditionals if () then . . . are placed to control
whether an element is produced or not—these will be replaced in
the sequel.

2.2.2 Structural features of skeleton queries. The skeleton
query serves as a query template whose stub conditions will be
instantiated in the second phase. The two following definitions help
to make properties of this template precise:

Definition 6 (Output variable). A variable is said to be an output
variable when that variable is bound to nodes that may be output.

3

if () then $v else ()



The Target Form of the Transformed exp.

(s1) If a node is output it has been previously bound to an output variable, 
(s2) all occurrences of for are consecutive-child-axis for-expressions, and
(s3) a (stub) if-conditional is located in the return part of each for. 

Structural features of the skeleton query

(t1) If a node is output it has been previously bound to an output variable, 
(t2) all occurrences of for are consecutive-child-axis for-expressions, and
(t3) if-conditionals that appear in the innermost return part of a for. 

A sequence expression (e1, …, eK), in which ei is a for-expression or $R

It has the following structural features when ei is a for-expression;

if cond then $v else ()

if () then $v else ()



Input Query Transformation
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of rewriting phases more digestible, we characterize the intermediate
XQuery dialects obtained after a phase has completed its work.

2.4 A complete example
For the DTD D1 given in Example 1, consider the XQuery expres-
sion (A) presented in the introduction. In the split phase, expression
(A) is rewritten into the following form (additionally, standard sim-
plifications [12] have been applied to eliminate empty sequences):

(for $� in $R/a return
for $b in $�/b return
for $a in $R/a return $b/c,

for $� in $R/a return
for $b in $�/b return
for $a in $R/a return $a/c)

Note that topmost syntactic construct is a sequence. Non-child axes
have been eliminated. Next, in the map phase, the above expression
is transformed as follows:

(for $� in $R/a return
for $b in $�/b return

for $o in $b/c return
if (if $R/a then $o else ()) then $o else (),

for $� in $R/a return
for $o in $�/c return

if (if (if $R/a then $R/a/b else ()) then $o else ())
then $o
else ())

If this query outputs a node, it has previously been bound to an
output variable (here: $o). Finally, in the inject phase, we extract the
conditions from the above expression and place them in the skeleton
query’s holes (recall Example 1). We obtain the following:

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if (if (if $R/a then $R/a/b else ()) then $c else ())
then $c else (),
for $d in $c/d return (if () then $d else ())))

Note that the condition (with dashed underline) in the first for-
expression in the sequence expression is not injected since there
are no places to inject it in the skeleton query. Again, the applica-
tion of existing techniques for the elimination of empty sequence
expressions [12] leads to a simplified variant of the above:1

for $a in $R/a return
for $c in $a/c return
if (if (if $R/a then $R/a/b else ()) then $c else ())
then $c else ()

Evaluation of this query invokes no DDO operations at all. If we
wrap (A) in a ddo() call, it is equivalent to the above expression.

3 SPLIT PHASE
This section describes how a given XQuery expression e—conforming
to the input syntax shown in Figure 3a—is transformed into an ex-
pression e

0 that contains no sequence expressions except for the
topmost expression. Non-�ild axes are also eliminated in this
1We could further unfold the nested if-conditional but optimizations along these lines
are well-known and not the focus of the present paper.

phase. The obtained expression conforms to the syntax shown in
Figure 3b. To this end, six transformation rules are presented. Each
transformation is relatively simple.

3.1 Eliminating long-distance axes
A long-distance axis step may extract nodes that are not directly
adjacent to the step’s context node. Steps along these axes, such as
dos, descendant, aos and ancestor, can be eliminated by translating
them into finite sequences of �ild or parent axis steps: there is a
maximum height of input XML documents that conform to a given
NRDTD. The maximum height of trees that conform to NRDTD
D can be easily calculated using MaxH(D.l0), which is defined as
follows:
MaxH((r1, . . . , rN )) = maximum(MaxH(r1), . . . , MaxH(rN ),1)
MaxH(r ) = MaxH(D.µ(l)) + 1 if r 2 {l , l⇤, l+, l?}

We use H to denote the maximum height of the input trees. For
example, the maximum height for XML documents that conform
to the NRDTD D1 presented in Example 1 is H = 4. Each long-
distance axis can be eliminated using the following transformation
rules that “unroll” the long-distance axis:

e/dos ::�
(e/self ::� ,
e/�ild ::� ,

e/�ild :: ⇤ /�ild ::� ,
...,

e/�ild :: ⇤ /�ild :: ⇤ /.../�ild ::�|                                       {z                                       }
H steps

)

(⇤)

e/aos ::�
(e/self ::� ,
e/parent ::� ,
e/parent :: ⇤ /parent ::� ,
...,

e/parent :: ⇤ /parent :: ⇤ /.../parent ::�|                                              {z                                              }
H steps

)

(⇤)

Similar transformation rules can be applied to eliminate descendant-
and ancestor-axis step expressions. The generated path expressions
“probe” the vertical vicinity of the context node (up to H steps away)
for elements with label � . Some of these probing paths will al-
ways yield the empty sequence (). For a path of parent-axis steps,
such meaningless expressions can be eliminated as described in
Section 3.4. For a path of �ild-axis steps, such expressions can be
eliminated in the inject step, as described in Section 5. The expres-
sions that are obtained after the application of the above rules will
have the following syntactic form:

e ::= $� | (e, e, ..., e) | () | e/� ::� | for $� in e return e

| if e then e else ()
� ::= �ild | parent | self
� ::= label | ⇤

3.2 Simplifying step expressions
We rely on two transformations to simplify step expressions. Once
these two transformations are applied, we obtain single-step expres-
sions that originate in a variable.
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for $b in $R/a/b return
     for $a in $b/.. return ($b, $a)/c

The input query e

The transformed query e’

up to DDO
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of rewriting phases more digestible, we characterize the intermediate
XQuery dialects obtained after a phase has completed its work.

2.4 A complete example
For the DTD D1 given in Example 1, consider the XQuery expres-
sion (A) presented in the introduction. In the split phase, expression
(A) is rewritten into the following form (additionally, standard sim-
plifications [12] have been applied to eliminate empty sequences):
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for $a in $R/a return $b/c,

for $� in $R/a return
for $b in $�/b return
for $a in $R/a return $a/c)

Note that topmost syntactic construct is a sequence. Non-child axes
have been eliminated. Next, in the map phase, the above expression
is transformed as follows:

(for $� in $R/a return
for $b in $�/b return

for $o in $b/c return
if (if $R/a then $o else ()) then $o else (),

for $� in $R/a return
for $o in $�/c return

if (if (if $R/a then $R/a/b else ()) then $o else ())
then $o
else ())

If this query outputs a node, it has previously been bound to an
output variable (here: $o). Finally, in the inject phase, we extract the
conditions from the above expression and place them in the skeleton
query’s holes (recall Example 1). We obtain the following:
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for $c in $a/c return
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for $d in $c/d return (if () then $d else ())))

Note that the condition (with dashed underline) in the first for-
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expressions [12] leads to a simplified variant of the above:1
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3 SPLIT PHASE
This section describes how a given XQuery expression e—conforming
to the input syntax shown in Figure 3a—is transformed into an ex-
pression e

0 that contains no sequence expressions except for the
topmost expression. Non-�ild axes are also eliminated in this
1We could further unfold the nested if-conditional but optimizations along these lines
are well-known and not the focus of the present paper.

phase. The obtained expression conforms to the syntax shown in
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...,
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)

(⇤)
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...,

e/parent :: ⇤ /parent :: ⇤ /.../parent ::�|                                              {z                                              }
H steps

)

(⇤)
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D; cxt ` () ! ()

D; cxt ` r1 ! e1 · · · D; cxt ` rN ! eN
D; cxt ` (r1, . . . , rN ) ! (e1, . . . , eN )

((r = l ) _ (r = l ⇤) _ (r = l+) _ (r = l ?))
a fresh variable $u 2 Var D; $u ` D.µ(l) ! e

D; $� ` r ! for $u in $�/�ild ::l return (if () then $u else (), e)

Figure 1: Skeleton query derivation for NRDTD D.

2.1 XQuery
2.1.1 The data model of XQuery. XQuery’s data model is

based on sequences, namely, ordered collections of zero or more
items. One important characteristic of the data model is that all se-
quences are flat: a sequence never contains other sequences; nested
sequence expressions are implicitly flattened by the XQuery pro-
cessor. In addition, there is no distinction between an item x and
the singleton sequence (x) containing that item. Sequences are
assigned an effective Boolean value: an empty sequence, denoted by
(), represents false while any non-empty sequence represents true.

2.1.2 Input XQuery expressions. The subset of XQuery ex-
pressions that comprise our input dialect is represented in Figure 3a.
Note that the input XQuery form does not include element construc-
tors because we focus on twig queries, which extract subtrees that
satisfy given tree patterns. The absence of element constructors
renders the target dialect purely functional (constructors in XQuery
induce side effects) so that let-expressions can be eliminated by
replacing bound variables with their defining expressions [15]. Note
also that we use a special variable $R instead of the doc function
to denote the document node of an input XML document. We use
dos and aos to abbreviate the descendant-or-self and ancestor-or-
self axes, respectively. In addition, we use Var and Label to denote
an infinite set of variables and an infinite set of element tag names
(short: labels), respectively.

2.2 The skeleton query
2.2.1 Derivation of skeleton queries. We design skeleton

queries based on the following principles, which later enable us to
inject test conditions that we extract from the input query:

• A skeleton query is a DDO-free expression,
• the query encodes the schema that the input documents adhere

to, and
• stub if-conditionals (to be replaced later) are placed in appropri-

ate positions.

Our skeleton queries are formulated based on nested-relational
DTDs, which are very common in practice [1]. Nested-relational
DTDs are a proper subclass of non-recursive, disjunction-free DTDs.

Definition 4 (Document Type Definition (DTD)). A DTD over a
finite alphabet � is a triple D = (�, l0, µ), where l0 is the root label
and µ is a function from � to the set of regular expressions over �.
µ(l) = () (the empty sequence) if label l denotes an element leaf

s ::= for $� in $�/�ild ::� return sr | ()
sr ::= ((if () then $� else ()), s, ..., s)

Figure 2: The syntax of a skeleton query

node. A regular expression r over � is defined as follows:

r ::= l (⇤ label, l 2 � ⇤)
| (r , r , . . . , r ) (⇤ sequence ⇤)
| r

⇤ (⇤ zero or more occurrences ⇤)
| r

+ (⇤ one or more occurrences ⇤)
| r? (⇤ zero or one occurrence ⇤)
| r | r | · · · | r (⇤ disjunction ⇤)

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(�, l0, µ) is an NRDTD if D is non-recursive, and µ(l) is a sequence
(r1, . . . , rN ) such that each ri has the form li , l⇤i , l+i , or li ?, and all
li s are distinct labels.

The algorithm for deriving a skeleton query from an NRDTD is
defined in terms of a set of inference rules, as shown in Figure 1. In
these rules, a judgment of the form

D; cxt ` r ! e

indicates that, given an NRDTD D and a variable cxt of XQuery rep-
resenting the context position in all the XML documents conforming
to D, the regular expression r is transformed into skeleton XQuery e.
For a given NRDTD D and a variable $R representing the root nodes
of all the XML documents conforming to D, the skeleton XQuery e

is obtained by means of the following judgment:

D; $R ` D.l0 ! e .

The resulting skeleton query e has the syntactic form shown in
Figure 2. The query is DDO-free since every step expression it
contains is a single-node child-traversal expression.

Example 1. Consider an NRDTD D1 = (�1, a, µ1), where �1 =
{a, b, c, d} and µ1(a) = (b⇤, c+), µ1(c) = d?, and µ1(b) = µ1(d) = ().
Then, the skeleton query for D1 is as follows (for readability, we omit
concatenations with the empty sequence and follow the convention
to abbreviate $�/�ild ::� as $�/� ):

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

Note how the stub conditionals if () then . . . are placed to control
whether an element is produced or not—these will be replaced in
the sequel.

2.2.2 Structural features of skeleton queries. The skeleton
query serves as a query template whose stub conditions will be
instantiated in the second phase. The two following definitions help
to make properties of this template precise:

Definition 6 (Output variable). A variable is said to be an output
variable when that variable is bound to nodes that may be output.

3

The skeleton query s

a
b b c c

d

$R

cond
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A DO XQUERY PROCESSORS BENEFIT
FROM DDO-FREENESS?

While its individual rewritings are simple, the DDO-freeness trans-
formation constitutes a whole-query multi-step transformation that
incurs effort at compile time. Are we, then, actually rewarded with
reduced query runtime? This brief appendix answers this question
for the paper’s running example query (A) of Section 2.3. For conve-
nience, we have reproduced the actual XQuery text of the original
and transformed queries in Figure 9.

A comprehensive experimental assessment that accompanies the
present theoretical study is still due but the following already pro-
vides a clear indication of the potential of DDO-freeness. It is a
salient feature of DDO-free XQuery that it is implementable on
top of any existing language implementation—no changes to the
XQuery engines’ core are required. The following experiments use
the XQuery processors BaseX 8.4 [8] and Saxon-HE 9.7.0.18J [16].

The larger the intermediate results of path step evaluation, the more
impact we expect to see from a transformation that removes the—
possibly many—implicit calls to ddo() [10]. To this end, we
synthesized a series of XML documents that
(1) validate against the nested-relational DTD D1 of Example 1

(also see Figure 10a) and
(2) grow in size: a document of size n contains about 1 + 2 1

2 ⇥ n

elements, arranged in a node hierarchy as depicted in Figure 10b.
(In serialized form, this document amounts to ⇡ 20 ⇥ n bytes of
XML text.)

( let $R := doc(” hdocument of size n i”) return
for $b in $R/a /b return

for $a in $b/ ancestor ::* return
($b,$a) / c ) / self : :node()

(a) Original twig query incurring DDO overhead
let $R := doc(” hdocument of size n i”) return

for $a in $R/a return
for $c in $a/c return

i f ( i f ( i f $R/a then $R/a /b else ( ) ) then $c
else ( ) ) then $c

else ()

(b) DDO-free query after transformation

Figure 9: Timed XQuery expressions (original vs. DDO-free)

<!DOCTYPE a [
<!ELEMENT a (b*, c+)>
<!ELEMENT b EMPTY>
<!ELEMENT c (d?)>
<!ELEMENT d (#PCDATA)

]>

(a) Nested-relational DTD

a

b c

d

n ⇥ ⇥ n

⇡ 1
2n ⇥

(b) Sketch of the element hier-
archy in document of size n

Figure 10: Generated input XML documents

Table 1: Wall-clock times (measured in milliseconds)4 for the
evaluation of the twig query over different input document
sizes n (OOM: no measurement due to out of memory condition)

BaseX Saxon
doc. size n original DDO-free original DDO-free

1 1.78 1.06 0.56 1.02
10 7.03 2.17 2.69 3.12
100 40.43 5.30 10.70 6.05

1 000 454.20 17.44 287.67 13.53
10 000 OOM 30.69 79646.54 62.15
100 000 OOM 72.80 OOM 217.07

1 000 000 OOM 404.79 OOM 1531.95

Looking at the original twig query of Figure 9a, its evaluation over a
document of size n will incur

n|{z}
# of b nodes

⇥ ( 1|{z}
ancestor::*

+ 1|{z}
child::c

) + 1|{z}
self::node()

invocations of ddo() (the initial path $R/a/b does not lead to
a ddo() operation). The ddo() call implicit in the final self::node()
step will remove duplicates among n

2 c elements, leaving us with
an document-ordered result sequence of length n. We instrumented
the code of BaseX 8.4 and found its engine to perfectly follow this
breakdown of the predicted ddo() runtime effort.
Table 1 reports on the evaluation times we observed when the original
query and its DDO-free equivalent are evaluated over documents
of size n = 1, 10, . . . , 1 000 000. We list the average time of 10 runs;
for BaseX we include evaluation and printing (serialization) time.
Starting with n = 1000, the DDO-free query exhibits a substantial
performance advantage of at least an order of magnitude. The gap
dramatically widens with growing document size as the original
ddo()-intensive variants start to struggle with the intermediate
node sequences of length n

2 (in fact, both BaseX and Saxon fail to
process the larger document instances within a JVM heap budget
of 4 GB). We also learn that the DDO-free transformation is safe to
be used as the engine’s default processing mode since the system
always benefits (BaseX) or pays a negligible price for tiny to small
document sizes only (Saxon).

A look at BaseX’ query plans discloses that the system has to
evaluate the original query variant in terms of its CachedStep
operators which allocate and fill buffers of nodes that are then passed
to ddo(). Instead, the DDO-free equivalent exclusively relies on
the IterStep primitive, a path evaluation algorithm that does not
use any intermediate node storage.

4Intel Core i7 CPU clocked at 3.3 GHz supported by 16 GB RAM. BaseX and Saxon
are both implemented in Java.
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e ::= $� | (e, e, ..., e) | () | e/� ::� | for $� in e return e
| if e then e else ()

� ::= �ild | parent | self | descendant | ancestor
| descendant-or-self (dos) | ancestor-or-self (aos)

� ::= label | ⇤

(a) Our input syntax

es ::= (e, e, ..., e)
e ::= $� | $�/�ild ::� | if e then e else ()

| for $� in $�/�ild ::� return e
� ::= label | ⇤

(b) Output syntax in the split phase

es ::= (ef , ef , ..., ef )
ef ::= $� | for $� in $�/�ild ::� return er
er ::= ef | if cond then $� else ()
cond ::= ep | if cond then e else ()
ep ::= $� | ep/�ild ::�
� ::= label | ⇤

(c) Output syntax in the map phase

e ::= for $� in $�/�ild ::� return er
er ::= ((if conds then $� else ()), e, ..., e)
conds ::= (cond, ..., cond )
cond ::= ep | if cond then e else () | ()
ep ::= $� | ep/�ild ::�
� ::= label | ⇤

(d) Output syntax in the inject phase

Figure 3: Input and output syntaxes in each phase

Definition 7 (Consecutive-child-axis for-expression). A for-ex-
pression (for $�1 in e2 return e3) is said to be a consecutive-
child-axis expression when
(1) e2 has the form $�0/�ild ::�1, and
(2) if e3 contains a for-expression, then in the outermost for-expression

(for $�2 in e4 return e5) of e3, e4 has the form ($�1/�ild ::�2).

Intuitively, a consecutive-child-axis for-expression is a nested for-
expression in which the in part is a step expression ($�/�ild ::� )
and $� is defined in the innermost outer for.

Property 1. A skeleton query exhibits the following three structural
properties:

(a) If a node is output it has been previously bound to an output
variable,

(b) all occurrences of for are consecutive-child-axis for-expressions,
and

(c) a (stub) if-conditional is located in the return part of each for.
These conditionals have the form

if () then $� else ().

The () conditions are placeholders (or holes) that will be filled
with test conditions extracted from the input query. Note that a
skeleton query returns all nodes in DDO for any XML document
that conforms to the input NRDTD if we replace the conditions
with true. This DDO-property is preserved when we place more
restrictive conditions in the holes.

2.3 Transforming input queries and injecting
conditions

The transformation of the input queries is the core of the proposed
method. By properly transforming an input query, we can obtain an
expression with a structure similar to that of a skeleton query. It then
becomes possible to “read off” the conditions specified in the input
query and to inject those conditions into the skeleton query holes.
To facilitate this, we rewrite the transformed input query to take on
a specific form:

Property 2. The target form of a transformed input query is a se-
quence expression (e1, ..., eK ) in which each component expression

ei in (e1, ..., eK ) is a for-expression or the variable $R. When ei is a
for-expression, it exhibits the following three structural properties:

(a) If a node is output it has been previously bound to an output
variable,

(b) all occurrences of for are consecutive-child-axis for-expressions,
and

(c) if-conditionals that appear in the innermost return part of a
for have the following form:

if cond then $� else () .

The conditions cond that appear in these if-expressions can be ex-
tracted and placed to fill the associated holes in the skeleton query’s
stub conditionals. Note that the transformed input and skeleton
queries exhibit a nearly identical structure (compare Properties 1
and 2).

We structure the transformation of the input query as follows.
Split and map are preparatory; the actual extraction and injection of
conditions happens in the final inject phase:

• Split is described in Section 3. In this phase, an input query
that conforms to the syntax shown in Figure 3a is split such
that there are no sequence expressions except for the topmost
expression. In addition, non-child axes are eliminated. The
expressions obtained in this phase conform to the syntax shown
in Figure 3b.

• Map is described in Section 4. Here, for each expression e in the
topmost sequence expression es obtained in the split phase (see
Figure 3b), e is rewritten into a for-expression that is equivalent
up-to-DDO. Each of these for-expression satisfies Property 2.
The expressions obtained in this phase conform to the syntax
shown in Figure 3c.

• Inject is discussed in Section 5. This phase finally extract con-
ditions from the transformed input query and places them in
the skeleton’s holes. Since the skeleton query and the trans-
formed query share shapes, this injection can be performed in a
straightforward fashion.

Key to the input query transformation are rewriting rules that
preserve equivalence up-to-DDO. We have marked these rules by (⇤)
to aid the discussion. In an effort to make the following longer chain

4

Our input syntax

For a given NRDTD and an XQuery e for an XML document that 
conforms to the DTD, e can be transformed into e’ such that 
e’=ddo(e) and e’ is DDO-free.

• A real world practical performance measurement.
• Relaxing the restriction on schemas and input syntax.

• Any XQuery engines can utilize this results.
• May have some benefits in unordered mode.

Future work:


