DDO-Free XQuery

Hiroyuki Kato!, Yasunori Ishihara? and Torsten Grust’

INational Institute of Informatics
2Osaka University
SUniversitit Tiibingen

The 16th International Symposium on
Database Programming Languages (DBPL2017)

September 1, 2017, Munich, Germany

"_l" LBCRITARD KARLS“
¢ KIRAKF UNIVERSITAT
OSAKA UNIVERSITY TUBINGEN

DDO (Distinct Document Order)

‘“heavily-ordered”
A prominent feature in XML processing using XQuery

v reflecting the models of ordered trees

v the document order: a total order defined over all nodes 1n
the tree, determined by a preorder traversal

e/a.::t = distinct-doc-order(for $fs:dot in e return o.::7)

It 1s potentially costly
e/o::Tl/. .. JOK:TK
= ddo(for $fs:dot in ddo(...) return ox::Tx)

There are studies on avoiding the need for DDO operations.
[SIGMOD02a], [SIGMODO02b], [SIGMODO3], [DBPL03], [DEXA05], [MSCS15], ...

DDO-free XQuery

e/o::t = for $fs:dot in e return o::T

Syntactic restriction 1s needed.

A single-node child-traversal expression $v/child::t is DDO-free

for $v in doc(“foo.xml”)/r/a
return ($v/b, $v/c)

navigating to child nodes from a single node does not require DDO

when XML documents are stored in a serialized (preorder-based) fashion.

Many XQuery engines such as BaseX, MonetDB/XQuery, DB2/pure XML adopt this.

Most theoretical work on XQuery [TODS06], [ICFP15], [ESOPI15]
are based on this syntactic restriction.

Twig Query with DDO

Twig queries: one of the typical use cases of XQuery

Extracting subtrees that satisty tree patterns

Twig queries with DDO are the norm and not the exception.

[Le]]=(o0 000)
[[ddo(e)]]=(e @ » @)

e may not be DDO-free

[An example] Analyzing a log file in XML format using a twig query
Extracting nodes that satisfying a tree pattern and are sorted in DDO

| A running example]

ddo(for $b in doc(“foo.xml”’)/a/b return
for $a in $b/.. return ($b, $a)/c)

The Problem

Naive evaluation of ddo(e) requires
multiple application of ddo

=> may lead to significant sorting
overhead

| A running example]

ddo(for $b in doc(“foo.xml”’)/a/b return
for $a in $b/.. return ($b, $a)/c)

MacBookPro:DBPL-experiment katouhiroyuki$ java -

core/target/classes org
distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

distinct-doc-order()
distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

distinct-doc-order()
distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

distinct-doc-order()
distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

W N N N N N N N N N N N N N N N N N N NS

distinct-doc-order()
- :t-doc-order()
“t-doc-order()
:t-doc-order()

“t-doc-order()

DDO-free e’

distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

distinct-doc-order()
distinct-doc-order()
distinct-doc-order()
distinct-doc-order()

F N N N N N N N N N N

distinct-doc-order()

distinct-doc-order():

distinct-doc-order():

distinct-doc-order():

distinct-doc-order():

“t-doc-order():

distinct-doc-order():

distinct-doc-order():

. basex.BaseX -zXV DBPL-
for node sequence of s1iz
took 2.38E-4 ms

for node sequence of siz
after duplicate removal
took 0.265515 ms

for node sequence of siz
took 1.57E-4 ms

for node sequence of si:
after duplicate removal
took 9.130738 ms

for node sequence of si:
took 2.0E-4 ms

for node sequence of si:
after duplicate removal
took 0.112579 ms

for node sequence of s1i:
took 2.81E-4 ms

for node sequence of siz
after duplicate removal
took 0.120164 ms

for node sequence of siz
took 2.27E-4 ms

for node sequence of si:
after duplicate removal
took ©.118553 ms

for node sequence of si:
took 1.86E-4 ms

for node sequence of si:
after duplicate removal
took 9.132188 ms

for node sequence of s1iz:
took 2.11E-4 ms

for node sequence of s1iz
after duplicate removal
took 0.119015 ms

What we have done

An XQuery transformation to evaluate twig
queries with DDO efficiently.

| Input]
* a schema information (nested-relational DTD) and
* a twig query e
|Output]
a transformed XQuery e’ such that e’=ddo(e) and e’ 1s DDO-free.

The input XQuery form does not include element constructors
because we focus on twig queries, which extract subtrees that
satisfy given tree patterns described in XQuery

Basic Idea

Generate-and-Test approach

(G): Prepare a DDO-free skeleton query s, which has the
ability to generate all nodes in DDQO for any XML
document that conforms to the schema.

(T): Formulate a s[cond] by injecting node test conditions
cond extracted from the input query e.

s[cond] 1s DDO-free
(1) How to prepare the skeleton query s.

(2) How to extract appropriate conditions from the input query.

(3) How to inject those conditions 1nto the skeleton query.

Our Solution

(1) How to prepare a DDO-free skeleton query s.

v can be derived for a given nested-relational DTD.

(2) How to ex

tract appropriate conditions from the input query

v the input query e can be transtormed 1nto e’ which has a structure
similar to that of the skeleton query s to reveal the conditions.

v this transformation preserves equivalence up to DDO,

ddo(e)=d

(3) How to inj

do(e’)
ect those conditions into the skeleton query

v Since e’]
obtained

nas a structure similar to that of s, s[cond] can be
In a systematic way.

s[cond] 1s DDO-free and equivalent to the input query e up to DDO

cond 1s extracted from e’, which 1s equivalent to e up to DDO

Nested-relational DTD

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(2, lp, 1) is an NRDTD if D is non-recursive, and p([) is a sequence
(r1,...,rN) such that each r; has the form [;, I7, I, or [;?, and all
[;s are distinct labels.

The height of trees are fixed

an example: D1=(21, a, u1) Node order can be distinguished by

21={a,b ’: d} using the single-node child-traversal
u1(a)=(b*, c+) expression
/11(C)=d?

u1(b)=u1(d)=()

$ R |[«—document node
|

a
b /b/\c\cl b u1’(a)=(b*, c+, b)

for $a in $R/a
return ($a/b, $a/c)

Skeleton Query Construction

The design policy

* A skeleton query is a DDO-free expression (use single-node child traversal) ,
* the query encodes the schema that the input document adhere, and

* stub if-conditionals are placed 1n appropriate positions to control whether an
element 1s produced or not.

Di=(21, a, u1)
21={ab,cd}
ui(a)=(b*, c+)
ui(c)=d?
ui1(b)=u1(d)=0)
SR
I
d
b /b/\c\clz

An empty sequence () represents false.
Any non-empty sequence represents true.

for $a in $R/a return

(if () then $a else (),
for $0 in $a/b return (if () then $b else ()),

for $c in $a/c return

(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

The skeleton query returns all nodes in DDO
if the conditions are replaced with true.

Our Solution

(2) How to extract appropriate conditions from the input query

v the input query e can be transformed into e’ which has a structure
similar to that of the skeleton query s to reveal the conditions.

v this transformation preserve equivalence up to DDQO,
ddo(e)=ddo(e’)
(3) How to inject those conditions into the skeleton query

v Since e’ has a structure similar to that of s, s[cond] can be
obtained 1n a systematic way.

s[cond] 1s DDO-free and equivalent to the input query e up to DDO

cond 1s extracted from e’, which 1s equivalent to e up to DDO

Structural Features of Skeleton Query

(s1) If a node 1s output i1t has been previously bound to an output variable,
(s2) all occurrences of for are consecutive-child-axis for-expressions, and
(s3) a (stub) if-conditional 1s located in the return part of each for.

if () then $v else ()

An output variable 1s bound to nodes to be output.

A consecutive-child-axis for-expression 1s a nested for-expression
in which the in part is a step expression ($v/child::t) and $v is
defined 1n the innermost outer for.

SR

NN

b b

for $a in $R/a return
(if () then $a else (),
for $6 in $a/b return (if () then $b else ()),
for $c in $a/c return

(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

The Target Form of the Transtormed exp.

A sequence expression (ey, ..., ex), in which e¢;is a for-expression or $R

It has the following structural features when e; 1s a for-expression;

(t1) If a node is output it has been previously bound to an output variable,
(t2) all occurrences of for are consecutive-child-axis for-expressions, and
(t3) 1f-conditionals that appear in the innermost return part of a for.

if cond then $v else ()

Structural features of the skeleton query
(s1) If a node 1s output 1t has been previously bound to an output variable,
(s2) all occurrences of for are consecutive-child-axis for-expressions, and
(s3) a (stub) 1f-conditional 1s located in the return part of each for.

if () then $v else ()

Input Query Transformation

The 1input query e -
for $b in $R/a/b return

for $a in $b/.. return ($b, $a)/c

l up to DDO
The transtormed query e’ —

(for $v in $R/a return
for $6 in $v/b return
for $o in $b/c return

if (if $R/a then $o0 else ()) then $o else (),

for $v in $R/a return
for $o in $v/c return
if (if (if $R/a then $R/a/b else ()) then $o else ())
then $o

else ())

(jfor$z)1n = areturnThetransfgrmedqu@ry e —

: i for $b in $v/b return
i for $o in $b/c return -
if (if $R/a then $o else ()) then $o else ()

for $0 in $v/c return '
L if (if (if $R/a then $R/a/b else ()) then $o else ())

i then$o cond

i elseQ) o 4o
for $a in SR/Z return The skeleton query §—

SR (if () then/$a else (),
zlt for $b iy $a/b return (if () then $b else ()),
AN for $c in $a/c return
b b ¢ C| (if (j then $c else (),

d for $d in $c/d return (if () then $d else ())))|

BaseX 8 4 Saxon-HE 9.7.0.18]
doc. size n original DDO-free original DDO-free
1 1.78 1.06 0.56 1.02
10 7.03 2.17 2.69 3.12
100 40.43 5.30 10.70 6.05
1000 454.20 17.44 287.67 13.53
10000 OOM 30.69 79646.54 62.15
100 000 OOM 72.80 OOM 217.07
1 000000 OOM 404.79 OOM 1531.95
nx.. o XN Wall-clock times (msec)
/ \ OOM: out of memory
b c Intel Core 17 3.3GHz, 16GB RAM
1 = Both engines are implemented 1n Java
X an X Tog Heap size of JVM: 4GB

Conclusion and Future Work

For a given NRDTD and an XQuery e for an XML document that
conforms to the DTD, e can be transtormed into e’ such that

e¢’=ddo(e) and e’ 1s DDO-free.

* Any XQuery engines can utilize this results.
* May have some benefits in unordered mode.

Future work:
» A real world practical performance measurement.

* Relaxing the restriction on schemas and input syntax.

Our 1nput syntax

e = $v|(e, e ...,e)|()|e/a:rt |for $v in e return e
| if e then e else ()
a = child | parent | self | descendant | ancestor

| descendant-or-self (dos) | ancestor-or-self (aos)
T = label | %

